青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2103) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            久久久久久久久久看片| 亚洲午夜高清视频| 久热爱精品视频线路一| 99精品欧美一区| 久久天堂国产精品| 国产欧美日韩视频| 一区二区三区日韩精品| 欧美~级网站不卡| 欧美一区二区三区播放老司机| 欧美另类99xxxxx| 亚洲国产天堂久久国产91| 久久久久久免费| 欧美一级片久久久久久久| 亚洲国产你懂的| 亚洲专区欧美专区| 国产精品免费久久久久久| 亚洲一区综合| 中国女人久久久| 欧美激情一区二区| 亚洲高清视频的网址| 老司机精品视频一区二区三区| 亚洲欧洲免费视频| 久久精品水蜜桃av综合天堂| 欧美精品一区二区在线观看| 久久精品论坛| 欧美日韩午夜| 老司机午夜精品视频| 亚洲女爱视频在线| 亚洲一区国产视频| 欧美日本韩国在线| 亚洲精品九九| 欧美中文日韩| 91久久国产精品91久久性色| 久久嫩草精品久久久精品一| 久久人人97超碰精品888| 国产欧美精品在线| 久久精品二区| 欧美激情第3页| 99人久久精品视频最新地址| 欧美日韩小视频| 欧美一区二区视频网站| 国产精品啊啊啊| 午夜日韩av| 亚洲第一搞黄网站| 亚洲日本成人| 亚洲美女在线一区| 久久高清福利视频| 亚洲精品视频在线观看网站| 欧美视频一区二区三区在线观看| 亚洲无线一线二线三线区别av| 久久aⅴ国产欧美74aaa| 日韩网站免费观看| 久久久久久电影| 一区二区三区精品国产| 免费h精品视频在线播放| 亚洲亚洲精品在线观看 | 欧美国产三区| 亚洲图片欧美日产| 亚洲日本久久| 在线观看日韩国产| 国产农村妇女精品一二区| 亚洲人成网站影音先锋播放| 亚洲欧美日韩国产综合精品二区| 黄色日韩在线| 国产亚洲一区二区三区在线播放 | 亚洲在线一区二区| 欧美日韩亚洲免费| 欧美日韩精品欧美日韩精品一 | 久久高清一区| 中国日韩欧美久久久久久久久| 欧美第一黄网免费网站| 影音先锋亚洲精品| 久久一区欧美| 久久人体大胆视频| 久久米奇亚洲| 久久深夜福利| 国内久久精品视频| 久久亚洲综合| 亚洲二区三区四区| 91久久黄色| 亚洲综合色噜噜狠狠| 亚洲欧美色一区| 久久久久在线观看| 欧美成人网在线| 亚洲日本成人网| 亚洲欧美福利一区二区| 欧美主播一区二区三区| 欧美韩国日本一区| 亚洲欧美日韩成人| 午夜精彩国产免费不卡不顿大片| 午夜视频在线观看一区二区三区| 午夜精品免费视频| 欧美大片在线看免费观看| 国产精品v片在线观看不卡| 韩国一区电影| 久久久久在线观看| 99亚洲一区二区| 欧美日韩1234| 在线免费观看成人网| 国产精品一区在线观看你懂的| 久久精品国产69国产精品亚洲 | 亚洲黄色性网站| 欧美深夜福利| 一区二区精品在线观看| 性伦欧美刺激片在线观看| 国产视频在线观看一区二区三区 | 99re6这里只有精品视频在线观看| 久久综合九色综合久99| 欧美亚洲一区在线| 亚洲电影免费| 一本色道久久综合亚洲91| 久久久成人精品| 一区二区三区.www| 国产精品福利在线| 国产女主播视频一区二区| 一区二区三区国产| 欧美成人在线网站| 久久免费黄色| 久久av一区二区三区漫画| 欧美午夜片在线免费观看| 一本色道久久综合狠狠躁的推荐| 欧美精品少妇一区二区三区| 欧美激情久久久久久| 久久人人97超碰国产公开结果| 国产精品女同互慰在线看| 欧美一级久久| 久久成人资源| 亚洲第一黄网| 一本色道久久综合亚洲精品按摩| 蜜桃久久精品乱码一区二区| 亚洲欧洲日本mm| 中文av一区二区| 亚洲视屏一区| 欧美chengren| 亚洲毛片一区| 一本大道久久a久久综合婷婷| 欧美一区二区| 亚洲精品国产精品国产自| 一本久道久久综合婷婷鲸鱼| 国产精品久久久亚洲一区| 久久久久免费| 欧美日韩视频不卡| 久久久一二三| 欧美日韩在线三区| 久久男人av资源网站| 欧美日韩福利| 91久久国产综合久久蜜月精品| 99这里只有精品| 亚洲欧洲日韩综合二区| 欧美一乱一性一交一视频| 亚洲美女区一区| 亚洲激情女人| 亚洲一区二区av电影| 一区二区欧美在线观看| 久久亚洲图片| 久久青青草原一区二区| 91久久精品国产91性色tv| 亚洲国产精品久久久久婷婷884| 国产精品jizz在线观看美国| 亚洲高清视频一区二区| 精品成人久久| 久久久国产视频91| 欧美午夜在线视频| 亚洲一区不卡| 久久久午夜电影| 1024精品一区二区三区| 午夜精品一区二区三区在线视| 亚洲精品五月天| 免费久久99精品国产| 免费日韩视频| 亚洲人成在线播放网站岛国| 欧美黑人在线播放| 一区二区精品| 久久亚洲综合色| 亚洲黄色影片| 国产精品久久久久影院亚瑟| 亚洲欧洲99久久| 日韩一区二区免费高清| 欧美激情综合亚洲一二区| 国产精品三级视频| 久久精品一区二区三区不卡| 亚洲电影免费观看高清完整版在线观看 | 国产区亚洲区欧美区| 久久成人国产| 久久久免费av| 欧美成人a视频| 免费的成人av| 欧美福利视频| 日韩网站在线观看| 欧美69wwwcom| 久久久精品999| 久久aⅴ乱码一区二区三区| 免费一级欧美片在线观看| 亚洲男人av电影| 亚洲精品在线视频观看| 日韩视频不卡| 99在线精品视频在线观看| 国产亚洲午夜高清国产拍精品| 久久久久久亚洲精品杨幂换脸| 亚洲国产精品精华液网站|