• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Detect red circles in an image using OpenCV

            https://solarianprogrammer.com/2015/05/08/detect-red-circles-image-using-opencv/

            The code for this post is on GitHub: https://github.com/sol-prog/OpenCV-red-circle-detection.

            A few days ago someone asked me, in an email, if it is possible to detect all red circles in an image that contains circles and rectangles of various colors. I thought this problem could be of certain interest to the readers of this blog, hence the present article.

            From the many possible approaches to the problem of red circles detection, two seem straightforward:

            • Detect all circles from the input image and keep only the ones that are filled with red.
            • Threshold the input image in order to keep only the red pixels, search for circles in the result.

            I found the second approach to be slightly better than the first one (less false positives), so I am going to present it in this post.

            I will use the OpenCV library and C++, but you can easily follow along with any of the other OpenCV bindings (C, Python, Java).

            Lets start by thresholding the input image for anything that is not red. Instead of the usual RGB color space we are going to use the HSV space, which has the desirable property that allows us to identify a particular color using a single value, the hue, instead of three values. As a side note, in OpenCV H has values from 0 to 180, S and V from 0 to 255. The red color, in OpenCV, has the hue values approximately in the range of 0 to 10 and 160 to 180.

            Next piece of code converts a color image from BGR (internally, OpenCV stores a color image in the BGR format rather than RGB) to HSV and thresholds the HSV image for anything that is not red:

             1 	...  2 	// Convert input image to HSV  3 	cv::Mat hsv_image;  4 	cv::cvtColor(bgr_image, hsv_image, cv::COLOR_BGR2HSV);  5   6 	// Threshold the HSV image, keep only the red pixels  7 	cv::Mat lower_red_hue_range;  8 	cv::Mat upper_red_hue_range;  9 	cv::inRange(hsv_image, cv::Scalar(0, 100, 100), cv::Scalar(10, 255, 255), lower_red_hue_range); 10 	cv::inRange(hsv_image, cv::Scalar(160, 100, 100), cv::Scalar(179, 255, 255), upper_red_hue_range); 11 	... 

            Take the next input image as an example:

            Five colored circles

            if we use the above piece of code, this is what we get:

            Lower red hue range

            Upper red hue range

            As you can see, the first threshold image captured the big red circle from the input image, while the second threshold image has captured the smaller red circle. Typically, you won’t see such a clear separation between the two red ranges. I’ve slightly cheated when I filled the circles in GIMP and used hue values from both intervals, in order to show you that a similar situation can arrive in practice.

            Next step is to combine the above threshold images and slightly blur the result, in order to avoid false positives:

            1 	... 2 	// Combine the above two images 3 	cv::Mat red_hue_image; 4 	cv::addWeighted(lower_red_hue_range, 1.0, upper_red_hue_range, 1.0, 0.0, red_hue_image); 5  6 	cv::GaussianBlur(red_hue_image, red_hue_image, cv::Size(9, 9), 2, 2); 7 	... 

            Combined red hue range

            Once we have the threshold image that contains only the red pixels from the original image, we can use the circle Hough Transform to detect the circles. In OpenCV this is implemented as HoughCircles:

            1 	... 2 	// Use the Hough transform to detect circles in the combined threshold image 3 	std::vector<cv::Vec3f> circles; 4 	cv::HoughCircles(red_hue_image, circles, CV_HOUGH_GRADIENT, 1, red_hue_image.rows/8, 100, 20, 0, 0); 5 	... 

            As a side note, parameters 6 and 7 from the HoughCircles must be usually tuned from case to case in order to detect circles. All found circles are stored in the circles vector from the above piece of code, using this information we can outline the detected circles on the original image:

            1 	// Loop over all detected circles and outline them on the original image 2 	if(circles.size() == 0) std::exit(-1); 3 	for(size_t current_circle = 0; current_circle < circles.size(); ++current_circle) { 4 		cv::Point center(std::round(circles[current_circle][0]), std::round(circles[current_circle][1])); 5 		int radius = std::round(circles[current_circle][2]); 6  7 		cv::circle(orig_image, center, radius, cv::Scalar(0, 255, 0), 5); 8 	} 

            Outline of the detected circles

            Lets try the code on a slightly more complex image:

            Circles and rectangles input image

            and the result:

            Circles and rectangles detected red circles

            Adding some noise to the same input image as above:

            Circles and rectangles input image with noise

            and the incredible result:

            Circles and rectangles with noise detected red circles

            Ouch! Apparently the noise from the input image fooled the Hough detector and now we have more circles than we’ve expected. A simple cure is to filter the input image before the BGR to HSV conversion, for this kind of noise usually a median filter works best:

            1 	... 2 	cv::medianBlur(bgr_image, bgr_image, 3); 3  4 	// Convert input image to HSV 5 	cv::Mat hsv_image; 6 	cv::cvtColor(bgr_image, hsv_image, cv::COLOR_BGR2HSV); 7 	... 

            and now the result is much improved:

            Circles and rectangles with noise median filter detected red circles

            posted on 2017-08-29 10:52 zmj 閱讀(621) 評論(0)  編輯 收藏 引用

            狠狠人妻久久久久久综合| 香蕉久久夜色精品国产2020| 久久婷婷五月综合97色| 热re99久久6国产精品免费| 72种姿势欧美久久久久大黄蕉| 99久久人人爽亚洲精品美女| 久久亚洲sm情趣捆绑调教| 精品久久777| 久久丫精品国产亚洲av| 久久综合伊人77777| 久久免费视频观看| 亚洲中文字幕久久精品无码喷水| 国产成人99久久亚洲综合精品 | 久久国产精品久久精品国产| 久久综合色区| 精品一久久香蕉国产线看播放| 国内精品九九久久精品| 久久精品无码av| 国产99久久久国产精免费| 久久精品人人做人人爽电影| 亚洲AV无码久久精品蜜桃| 麻豆久久久9性大片| 久久久久久久久久免免费精品| 久久精品亚洲精品国产色婷| 久久AV无码精品人妻糸列| 久久成人小视频| 亚洲精品午夜国产va久久| 看全色黄大色大片免费久久久| 99热热久久这里只有精品68| 久久99毛片免费观看不卡| 国产精品久久久久AV福利动漫| 久久久久亚洲精品无码蜜桃| 免费精品久久天干天干| 亚洲综合久久夜AV | 久久天天躁狠狠躁夜夜不卡| 久久人人爽人人爽人人片av麻烦 | 久久久久女人精品毛片| 韩国免费A级毛片久久| 日韩亚洲欧美久久久www综合网 | 久久久久女教师免费一区| 99久久精品这里只有精品|