• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Detect red circles in an image using OpenCV

            https://solarianprogrammer.com/2015/05/08/detect-red-circles-image-using-opencv/

            The code for this post is on GitHub: https://github.com/sol-prog/OpenCV-red-circle-detection.

            A few days ago someone asked me, in an email, if it is possible to detect all red circles in an image that contains circles and rectangles of various colors. I thought this problem could be of certain interest to the readers of this blog, hence the present article.

            From the many possible approaches to the problem of red circles detection, two seem straightforward:

            • Detect all circles from the input image and keep only the ones that are filled with red.
            • Threshold the input image in order to keep only the red pixels, search for circles in the result.

            I found the second approach to be slightly better than the first one (less false positives), so I am going to present it in this post.

            I will use the OpenCV library and C++, but you can easily follow along with any of the other OpenCV bindings (C, Python, Java).

            Lets start by thresholding the input image for anything that is not red. Instead of the usual RGB color space we are going to use the HSV space, which has the desirable property that allows us to identify a particular color using a single value, the hue, instead of three values. As a side note, in OpenCV H has values from 0 to 180, S and V from 0 to 255. The red color, in OpenCV, has the hue values approximately in the range of 0 to 10 and 160 to 180.

            Next piece of code converts a color image from BGR (internally, OpenCV stores a color image in the BGR format rather than RGB) to HSV and thresholds the HSV image for anything that is not red:

             1 	...  2 	// Convert input image to HSV  3 	cv::Mat hsv_image;  4 	cv::cvtColor(bgr_image, hsv_image, cv::COLOR_BGR2HSV);  5   6 	// Threshold the HSV image, keep only the red pixels  7 	cv::Mat lower_red_hue_range;  8 	cv::Mat upper_red_hue_range;  9 	cv::inRange(hsv_image, cv::Scalar(0, 100, 100), cv::Scalar(10, 255, 255), lower_red_hue_range); 10 	cv::inRange(hsv_image, cv::Scalar(160, 100, 100), cv::Scalar(179, 255, 255), upper_red_hue_range); 11 	... 

            Take the next input image as an example:

            Five colored circles

            if we use the above piece of code, this is what we get:

            Lower red hue range

            Upper red hue range

            As you can see, the first threshold image captured the big red circle from the input image, while the second threshold image has captured the smaller red circle. Typically, you won’t see such a clear separation between the two red ranges. I’ve slightly cheated when I filled the circles in GIMP and used hue values from both intervals, in order to show you that a similar situation can arrive in practice.

            Next step is to combine the above threshold images and slightly blur the result, in order to avoid false positives:

            1 	... 2 	// Combine the above two images 3 	cv::Mat red_hue_image; 4 	cv::addWeighted(lower_red_hue_range, 1.0, upper_red_hue_range, 1.0, 0.0, red_hue_image); 5  6 	cv::GaussianBlur(red_hue_image, red_hue_image, cv::Size(9, 9), 2, 2); 7 	... 

            Combined red hue range

            Once we have the threshold image that contains only the red pixels from the original image, we can use the circle Hough Transform to detect the circles. In OpenCV this is implemented as HoughCircles:

            1 	... 2 	// Use the Hough transform to detect circles in the combined threshold image 3 	std::vector<cv::Vec3f> circles; 4 	cv::HoughCircles(red_hue_image, circles, CV_HOUGH_GRADIENT, 1, red_hue_image.rows/8, 100, 20, 0, 0); 5 	... 

            As a side note, parameters 6 and 7 from the HoughCircles must be usually tuned from case to case in order to detect circles. All found circles are stored in the circles vector from the above piece of code, using this information we can outline the detected circles on the original image:

            1 	// Loop over all detected circles and outline them on the original image 2 	if(circles.size() == 0) std::exit(-1); 3 	for(size_t current_circle = 0; current_circle < circles.size(); ++current_circle) { 4 		cv::Point center(std::round(circles[current_circle][0]), std::round(circles[current_circle][1])); 5 		int radius = std::round(circles[current_circle][2]); 6  7 		cv::circle(orig_image, center, radius, cv::Scalar(0, 255, 0), 5); 8 	} 

            Outline of the detected circles

            Lets try the code on a slightly more complex image:

            Circles and rectangles input image

            and the result:

            Circles and rectangles detected red circles

            Adding some noise to the same input image as above:

            Circles and rectangles input image with noise

            and the incredible result:

            Circles and rectangles with noise detected red circles

            Ouch! Apparently the noise from the input image fooled the Hough detector and now we have more circles than we’ve expected. A simple cure is to filter the input image before the BGR to HSV conversion, for this kind of noise usually a median filter works best:

            1 	... 2 	cv::medianBlur(bgr_image, bgr_image, 3); 3  4 	// Convert input image to HSV 5 	cv::Mat hsv_image; 6 	cv::cvtColor(bgr_image, hsv_image, cv::COLOR_BGR2HSV); 7 	... 

            and now the result is much improved:

            Circles and rectangles with noise median filter detected red circles

            posted on 2017-08-29 10:52 zmj 閱讀(615) 評論(0)  編輯 收藏 引用

            伊人久久大香线焦AV综合影院| 一本久久a久久精品亚洲| 色综合久久88色综合天天| 国产精品无码久久综合网| 国内精品久久国产| 亚洲狠狠久久综合一区77777| 97久久精品人人做人人爽| 久久久久亚洲av综合波多野结衣| 国产精品久久久久久久久久影院 | 国产高潮国产高潮久久久91 | 久久久久久A亚洲欧洲AV冫| AV狠狠色丁香婷婷综合久久| 一本色道久久99一综合| 亚洲精品乱码久久久久久按摩| 久久久久国产精品熟女影院| 精品久久久久久99人妻| 久久66热人妻偷产精品9| 久久久综合香蕉尹人综合网| 91久久婷婷国产综合精品青草| 久久亚洲色一区二区三区| 东京热TOKYO综合久久精品| 香蕉久久夜色精品国产尤物| 99久久亚洲综合精品网站| 亚洲女久久久噜噜噜熟女| 久久综合久久鬼色| 97超级碰碰碰碰久久久久| 国产情侣久久久久aⅴ免费| 国产欧美久久久精品影院| 久久有码中文字幕| 国产99久久九九精品无码| 国产日产久久高清欧美一区| 色婷婷综合久久久久中文 | 久久精品国产精品亚洲毛片| 少妇熟女久久综合网色欲| 色播久久人人爽人人爽人人片aV | 麻豆久久| 久久夜色撩人精品国产| 久久免费观看视频| 久久午夜福利电影| 国产精品一区二区久久精品涩爱 | 久久综合久久性久99毛片|