• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Ball Tracking / Detection using OpenCV

            https://anikettatipamula.blogspot.jp/2012/12/ball-tracking-detection-using-opencv.html

            Ball Tracking / Detection using OpenCV

               Ball detection is pretty easy on OpenCV. So to start with lets describe what steps we will go through.

                                   LINK TO THE CODE




            1.Load an image / start a video capture




            2.Convert image from RGB space to HSV space . HSV(hue saturation value) space gives us better results while doing color based segmentation.
            3.Seperate Image into its 3 component images(i.e H  S  V each of which is a one dimensional image or intensity image)
            H component
            S component

            V component

            4.Use a condition for intensity values in the image and get a Binary image.
              i.e let say we taken H intensity image .If our ball is red color .Then in this image we will find that the values of the pixel where the ball is present , lies in a specific range. so we define a condition for every pixel . if                                (pixel > threshold_min & pixel  )= pixel of o/p image is 1 else it is zero.

            NOTE:
            FOR THE PURPOSE OF CALIBRATION WE HAVE 2 SLIDERS ON EACH COMPONENT IMAGE TO SET THE LOWER AND UPPER LIMIT OF PIXEL VALUES.

            H component after condition


            We do this for all components i.e for S and V.


            S component after condition
            V component after condition
            5.Now we have three binary images( only black and only white) . Which has the region of ball as 1's and every thigh else which has the intensity values greater(less) than threshold .The pixels that do not pass this conditions will be zero.


            6.We then combine all the above three Binary images (i.e we AND them all). All the pixels that are white in the three images will be white in the output of this step.So there will be regions too which will have 1's but with lower areas and of random shapes.
            Combined image
            7.Now we use houghs transform on the output of last operation to find the regions which are circular in shape.

            8.Then we draw the marker on the detected circles as well as display the center and radius of the circles





            posted on 2017-08-29 09:19 zmj 閱讀(537) 評論(0)  編輯 收藏 引用


            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            日本强好片久久久久久AAA| 久久91这里精品国产2020| 精品久久久久中文字幕日本| 久久午夜电影网| 久久婷婷国产剧情内射白浆| 成人国内精品久久久久影院| 久久久久这里只有精品| 久久国产精品无码HDAV| 亚洲精品成人网久久久久久| 久久婷婷综合中文字幕| 色狠狠久久AV五月综合| 久久久久久噜噜精品免费直播| 久久精品国产亚洲AV嫖农村妇女| 久久久久99精品成人片三人毛片| 99久久精品毛片免费播放| 久久天天躁狠狠躁夜夜躁2014| 久久99精品国产麻豆婷婷| 久久精品国产亚洲精品2020| 99久久国产综合精品女同图片| 久久久WWW成人免费毛片| 四虎国产精品免费久久5151| 久久人人爽人人爽人人片AV不| 国产免费久久精品99re丫y| 狠狠久久综合伊人不卡| 日本精品久久久中文字幕| 国产亚洲精品自在久久| 久久久婷婷五月亚洲97号色| 伊人色综合久久天天人手人婷| 亚洲精品国产自在久久| 久久综合久久性久99毛片| 久久久久婷婷| 久久久久久国产a免费观看不卡| 久久精品成人免费国产片小草| 四虎国产精品免费久久久| 51久久夜色精品国产| 精品久久久久香蕉网| 狠狠色噜噜狠狠狠狠狠色综合久久 | 狠狠久久综合| 久久久久国产日韩精品网站| 国产精品无码久久四虎| 国产一区二区精品久久凹凸|