• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Ball Tracking / Detection using OpenCV

            https://anikettatipamula.blogspot.jp/2012/12/ball-tracking-detection-using-opencv.html

            Ball Tracking / Detection using OpenCV

               Ball detection is pretty easy on OpenCV. So to start with lets describe what steps we will go through.

                                   LINK TO THE CODE




            1.Load an image / start a video capture




            2.Convert image from RGB space to HSV space . HSV(hue saturation value) space gives us better results while doing color based segmentation.
            3.Seperate Image into its 3 component images(i.e H  S  V each of which is a one dimensional image or intensity image)
            H component
            S component

            V component

            4.Use a condition for intensity values in the image and get a Binary image.
              i.e let say we taken H intensity image .If our ball is red color .Then in this image we will find that the values of the pixel where the ball is present , lies in a specific range. so we define a condition for every pixel . if                                (pixel > threshold_min & pixel  )= pixel of o/p image is 1 else it is zero.

            NOTE:
            FOR THE PURPOSE OF CALIBRATION WE HAVE 2 SLIDERS ON EACH COMPONENT IMAGE TO SET THE LOWER AND UPPER LIMIT OF PIXEL VALUES.

            H component after condition


            We do this for all components i.e for S and V.


            S component after condition
            V component after condition
            5.Now we have three binary images( only black and only white) . Which has the region of ball as 1's and every thigh else which has the intensity values greater(less) than threshold .The pixels that do not pass this conditions will be zero.


            6.We then combine all the above three Binary images (i.e we AND them all). All the pixels that are white in the three images will be white in the output of this step.So there will be regions too which will have 1's but with lower areas and of random shapes.
            Combined image
            7.Now we use houghs transform on the output of last operation to find the regions which are circular in shape.

            8.Then we draw the marker on the detected circles as well as display the center and radius of the circles





            posted on 2017-08-29 09:19 zmj 閱讀(543) 評論(0)  編輯 收藏 引用

            日韩欧美亚洲综合久久| 亚洲国产精品高清久久久| 18岁日韩内射颜射午夜久久成人| 精品综合久久久久久97超人| 国产精品成人99久久久久| 久久九九久精品国产免费直播| 久久综合九色综合网站| 久久精品成人免费观看97| 久久人妻少妇嫩草AV蜜桃| 青青草国产成人久久91网| 久久午夜无码鲁丝片秋霞 | 色青青草原桃花久久综合| 久久超碰97人人做人人爱| 精品乱码久久久久久夜夜嗨| 色婷婷综合久久久久中文| 久久久亚洲精品蜜桃臀| 久久er热视频在这里精品| 亚洲第一极品精品无码久久| 日日狠狠久久偷偷色综合96蜜桃| 久久亚洲欧美日本精品| 久久人人爽人人爽人人片AV不| 久久无码国产| 久久97久久97精品免视看| 国产精品久久久久久福利69堂| 精品综合久久久久久98| 无码乱码观看精品久久| 精品水蜜桃久久久久久久| 亚洲国产精品久久久久| 亚洲国产精品久久久久婷婷软件 | 无码人妻久久一区二区三区免费| 狠狠色丁香久久婷婷综合_中 | 伊人久久大香线蕉综合网站| 久久一区二区三区99| 久久人人爽人人精品视频| 久久精品一区二区影院| 久久久WWW成人免费精品| 久久久久亚洲精品无码网址 | 无码国内精品久久人妻| 亚洲国产精品无码久久98| 国产精品美女久久久m| jizzjizz国产精品久久|