• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Ball Tracking / Detection using OpenCV

            https://anikettatipamula.blogspot.jp/2012/12/ball-tracking-detection-using-opencv.html

            Ball Tracking / Detection using OpenCV

               Ball detection is pretty easy on OpenCV. So to start with lets describe what steps we will go through.

                                   LINK TO THE CODE




            1.Load an image / start a video capture




            2.Convert image from RGB space to HSV space . HSV(hue saturation value) space gives us better results while doing color based segmentation.
            3.Seperate Image into its 3 component images(i.e H  S  V each of which is a one dimensional image or intensity image)
            H component
            S component

            V component

            4.Use a condition for intensity values in the image and get a Binary image.
              i.e let say we taken H intensity image .If our ball is red color .Then in this image we will find that the values of the pixel where the ball is present , lies in a specific range. so we define a condition for every pixel . if                                (pixel > threshold_min & pixel  )= pixel of o/p image is 1 else it is zero.

            NOTE:
            FOR THE PURPOSE OF CALIBRATION WE HAVE 2 SLIDERS ON EACH COMPONENT IMAGE TO SET THE LOWER AND UPPER LIMIT OF PIXEL VALUES.

            H component after condition


            We do this for all components i.e for S and V.


            S component after condition
            V component after condition
            5.Now we have three binary images( only black and only white) . Which has the region of ball as 1's and every thigh else which has the intensity values greater(less) than threshold .The pixels that do not pass this conditions will be zero.


            6.We then combine all the above three Binary images (i.e we AND them all). All the pixels that are white in the three images will be white in the output of this step.So there will be regions too which will have 1's but with lower areas and of random shapes.
            Combined image
            7.Now we use houghs transform on the output of last operation to find the regions which are circular in shape.

            8.Then we draw the marker on the detected circles as well as display the center and radius of the circles





            posted on 2017-08-29 09:19 zmj 閱讀(537) 評論(0)  編輯 收藏 引用

            精品久久久久久久久久中文字幕| 亚洲色欲久久久久综合网| 亚洲日韩中文无码久久| 亚洲AV日韩AV天堂久久| 久久精品国产只有精品2020| 免费国产99久久久香蕉| 日韩欧美亚洲综合久久影院Ds| 久久精品一本到99热免费| 国产∨亚洲V天堂无码久久久| 久久99国产精品二区不卡| 久久天天躁狠狠躁夜夜2020老熟妇| 2021国内精品久久久久久影院| 99久久99久久久精品齐齐| 久久久久国产| 国产精品美女久久久| 久久青青草视频| 91久久成人免费| 人妻精品久久久久中文字幕69 | 伊人久久成人成综合网222| 2021久久精品免费观看| 久久av免费天堂小草播放| 伊人久久综合精品无码AV专区| 色综合色天天久久婷婷基地| 亚洲欧洲日产国码无码久久99| 国产成人精品久久亚洲| 久久国产精品无码HDAV| 国内精品伊人久久久影院| 国产AⅤ精品一区二区三区久久| 午夜天堂精品久久久久| 久久精品国产色蜜蜜麻豆| 久久国产香蕉视频| 91精品观看91久久久久久 | 久久99国产综合精品女同| 国内精品欧美久久精品| 久久久久久免费一区二区三区| 亚洲精品无码久久久久| 久久九九久精品国产免费直播| 亚洲人成无码网站久久99热国产| 国产精品成人99久久久久91gav| 国产精品久久自在自线观看| 久久91精品国产91久久小草|