• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Ball Tracking / Detection using OpenCV

            https://anikettatipamula.blogspot.jp/2012/12/ball-tracking-detection-using-opencv.html

            Ball Tracking / Detection using OpenCV

               Ball detection is pretty easy on OpenCV. So to start with lets describe what steps we will go through.

                                   LINK TO THE CODE




            1.Load an image / start a video capture




            2.Convert image from RGB space to HSV space . HSV(hue saturation value) space gives us better results while doing color based segmentation.
            3.Seperate Image into its 3 component images(i.e H  S  V each of which is a one dimensional image or intensity image)
            H component
            S component

            V component

            4.Use a condition for intensity values in the image and get a Binary image.
              i.e let say we taken H intensity image .If our ball is red color .Then in this image we will find that the values of the pixel where the ball is present , lies in a specific range. so we define a condition for every pixel . if                                (pixel > threshold_min & pixel  )= pixel of o/p image is 1 else it is zero.

            NOTE:
            FOR THE PURPOSE OF CALIBRATION WE HAVE 2 SLIDERS ON EACH COMPONENT IMAGE TO SET THE LOWER AND UPPER LIMIT OF PIXEL VALUES.

            H component after condition


            We do this for all components i.e for S and V.


            S component after condition
            V component after condition
            5.Now we have three binary images( only black and only white) . Which has the region of ball as 1's and every thigh else which has the intensity values greater(less) than threshold .The pixels that do not pass this conditions will be zero.


            6.We then combine all the above three Binary images (i.e we AND them all). All the pixels that are white in the three images will be white in the output of this step.So there will be regions too which will have 1's but with lower areas and of random shapes.
            Combined image
            7.Now we use houghs transform on the output of last operation to find the regions which are circular in shape.

            8.Then we draw the marker on the detected circles as well as display the center and radius of the circles





            posted on 2017-08-29 09:19 zmj 閱讀(543) 評論(0)  編輯 收藏 引用

            日韩十八禁一区二区久久| 久久SE精品一区二区| 青青青国产精品国产精品久久久久| 久久精品一区二区| 久久精品中文字幕大胸| 99久久成人国产精品免费 | 久久无码AV中文出轨人妻| 久久综合九色欧美综合狠狠| 久久久噜噜噜久久中文福利| 久久久精品人妻无码专区不卡| 亚洲午夜久久久久久噜噜噜| 久久精品三级视频| AV无码久久久久不卡网站下载| 久久中文字幕人妻熟av女| 青青草国产成人久久91网| 日本人妻丰满熟妇久久久久久| 精品无码久久久久久国产| 国产V亚洲V天堂无码久久久| 中文字幕久久久久人妻| 欧美激情精品久久久久久久| 亚洲国产二区三区久久| 久久久国产乱子伦精品作者| 久久久无码精品亚洲日韩蜜臀浪潮| 精品国产一区二区三区久久蜜臀| 久久精品午夜一区二区福利| 午夜天堂精品久久久久| 九九精品久久久久久噜噜| 亚洲国产成人久久综合野外| 久久亚洲国产精品五月天婷| 中文字幕亚洲综合久久2| 青青青青久久精品国产h| 久久91综合国产91久久精品| 亚洲AV日韩精品久久久久久| 久久人人爽人人爽人人片av麻烦| 亚洲国产天堂久久综合| 日本久久久久久久久久| 伊人久久大香线蕉无码麻豆| 中文精品久久久久人妻不卡| 久久国产精品无码一区二区三区 | 人人妻久久人人澡人人爽人人精品 | 午夜欧美精品久久久久久久|