• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Point-Plane Distance

            LINK: http://mathworld.wolfram.com/Point-PlaneDistance.html
            Point-Plane Distance
            PointPlaneDistance

            Given a plane

             ax+by+cz+d=0
            (1)

            and a point x_0=(x_0,y_0,z_0), the normal to the plane is given by

             v=[a; b; c],
            (2)

            and a vector from the plane to the point is given by

             w=-[x-x_0; y-y_0; z-z_0].
            (3)

            Projecting w onto v gives the distance D from the point to the plane as

            D = |proj_(v)w|
            (4)
            = (|v·w|)/(|v|)
            (5)
            = (|a(x-x_0)+b(y-y_0)+c(z-z_0)|)/(sqrt(a^2+b^2+c^2))
            (6)
            = (|ax+by+cz-ax_0-by_0-cz_0|)/(sqrt(a^2+b^2+c^2))
            (7)
            = (|ax_0+by_0+cz_0+d|)/(sqrt(a^2+b^2+c^2)).
            (8)

            Dropping the absolute value signs gives the signed distance,

             D=(ax_0+by_0+cz_0+d)/(sqrt(a^2+b^2+c^2)),
            (9)

            which is positive if x_0 is on the same side of the plane as the normal vector v and negative if it is on the opposite side.

            This can be expressed particularly conveniently for a plane specified in Hessian normal form by the simple equation

             D=n^^·x_0+p,
            (10)

            where n^^=v/|v| is the unit normal vector. Therefore, the distance of the plane from the origin is simply given by p (Gellert et al. 1989, p. 541).

            Given three points x_i for i=1, 2, 3, compute the unit normal

             n^^=((x_2-x_1)x(x_3-x_1))/(|(x_2-x_1)x(x_3-x_1)|).
            (11)

            Then the distance from a point x_0 to the plane containing the three points is given by

             D_i=n^^·(x_0-x_i),
            (12)

            where x_i is any of the three points. Expanding out the coordinates shows that

             D=D_1=D_2=D_3,
            (13)

            as it must since all points are in the same plane, although this is far from obvious based on the above vector equation.

            SEE ALSO: Hessian Normal Form, Plane, Point, Projection Theorem

            REFERENCES:

            Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold, 1989.




            CITE THIS AS:

            Weisstein, Eric W. "Point-Plane Distance." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Point-PlaneDistance.html

            posted on 2009-03-24 17:18 zmj 閱讀(1078) 評論(0)  編輯 收藏 引用

            精品久久久久久国产三级| 久久久国产精华液| 国产成人精品久久二区二区| 久久精品国产亚洲AV大全| 97久久精品国产精品青草| 91久久精品电影| 2020久久精品亚洲热综合一本| 国内精品久久久久影院薰衣草 | 久久精品一区二区三区AV| 中文国产成人精品久久不卡| 99精品国产在热久久| 久久综合精品国产一区二区三区| 久久狠狠爱亚洲综合影院| 99久久久国产精品免费无卡顿 | 国产亚洲美女精品久久久2020| 色欲综合久久中文字幕网| 国産精品久久久久久久| 日韩乱码人妻无码中文字幕久久| 国产一区二区精品久久岳| 亚洲AV无码久久精品成人 | 狠狠久久亚洲欧美专区 | 热综合一本伊人久久精品| 91精品国产9l久久久久| 国产A级毛片久久久精品毛片| 91久久精品国产91性色也| 漂亮人妻被黑人久久精品| 色天使久久综合网天天| 国产成人久久精品麻豆一区| 精品久久久久久久久午夜福利| 热综合一本伊人久久精品 | 亚洲国产精品无码久久98| 亚洲精品乱码久久久久久蜜桃| 四虎国产永久免费久久| 99国产欧美久久久精品蜜芽 | 无码8090精品久久一区 | 久久综合久久自在自线精品自 | 久久99精品国产99久久6男男| 亚洲综合熟女久久久30p| 久久婷婷五月综合国产尤物app| 久久久久人妻一区精品果冻| 久久国产免费直播|