• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Point-Plane Distance

            LINK: http://mathworld.wolfram.com/Point-PlaneDistance.html
            Point-Plane Distance
            PointPlaneDistance

            Given a plane

             ax+by+cz+d=0
            (1)

            and a point x_0=(x_0,y_0,z_0), the normal to the plane is given by

             v=[a; b; c],
            (2)

            and a vector from the plane to the point is given by

             w=-[x-x_0; y-y_0; z-z_0].
            (3)

            Projecting w onto v gives the distance D from the point to the plane as

            D = |proj_(v)w|
            (4)
            = (|v·w|)/(|v|)
            (5)
            = (|a(x-x_0)+b(y-y_0)+c(z-z_0)|)/(sqrt(a^2+b^2+c^2))
            (6)
            = (|ax+by+cz-ax_0-by_0-cz_0|)/(sqrt(a^2+b^2+c^2))
            (7)
            = (|ax_0+by_0+cz_0+d|)/(sqrt(a^2+b^2+c^2)).
            (8)

            Dropping the absolute value signs gives the signed distance,

             D=(ax_0+by_0+cz_0+d)/(sqrt(a^2+b^2+c^2)),
            (9)

            which is positive if x_0 is on the same side of the plane as the normal vector v and negative if it is on the opposite side.

            This can be expressed particularly conveniently for a plane specified in Hessian normal form by the simple equation

             D=n^^·x_0+p,
            (10)

            where n^^=v/|v| is the unit normal vector. Therefore, the distance of the plane from the origin is simply given by p (Gellert et al. 1989, p. 541).

            Given three points x_i for i=1, 2, 3, compute the unit normal

             n^^=((x_2-x_1)x(x_3-x_1))/(|(x_2-x_1)x(x_3-x_1)|).
            (11)

            Then the distance from a point x_0 to the plane containing the three points is given by

             D_i=n^^·(x_0-x_i),
            (12)

            where x_i is any of the three points. Expanding out the coordinates shows that

             D=D_1=D_2=D_3,
            (13)

            as it must since all points are in the same plane, although this is far from obvious based on the above vector equation.

            SEE ALSO: Hessian Normal Form, Plane, Point, Projection Theorem

            REFERENCES:

            Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold, 1989.




            CITE THIS AS:

            Weisstein, Eric W. "Point-Plane Distance." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Point-PlaneDistance.html

            posted on 2009-03-24 17:18 zmj 閱讀(1082) 評(píng)論(0)  編輯 收藏 引用


            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            久久夜色精品国产亚洲| 国内精品免费久久影院| 蜜臀久久99精品久久久久久小说 | 日本高清无卡码一区二区久久| 久久国产精品国语对白| 97精品国产97久久久久久免费| 国产精品欧美久久久天天影视 | 久久久精品国产亚洲成人满18免费网站 | 色婷婷综合久久久久中文一区二区| 麻豆AV一区二区三区久久| 99久久婷婷国产一区二区| 日韩人妻无码一区二区三区久久 | 亚洲欧美国产日韩综合久久| 亚洲AV无一区二区三区久久| 久久久久久久综合综合狠狠| 九九精品99久久久香蕉| 人妻丰满?V无码久久不卡| 久久99精品综合国产首页| 久久亚洲日韩看片无码| 免费一级欧美大片久久网| 精品久久香蕉国产线看观看亚洲 | 亚洲国产成人久久综合区| 国内精品久久久久久久久电影网| 久久精品国产亚洲AV无码偷窥 | 波多野结衣AV无码久久一区| 久久伊人影视| 久久国产成人亚洲精品影院| 久久九九有精品国产23百花影院| 久久久久久毛片免费播放| 亚洲va国产va天堂va久久| 久久精品国产日本波多野结衣| 欧美一区二区久久精品| 日本久久久久久久久久| 色播久久人人爽人人爽人人片aV| 久久精品99无色码中文字幕| 精品无码久久久久久国产| 日本免费久久久久久久网站| 国产成人久久精品二区三区| 欧美色综合久久久久久| 久久久久亚洲av综合波多野结衣 | 久久久久久久久无码精品亚洲日韩 |