• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Point-Plane Distance

            LINK: http://mathworld.wolfram.com/Point-PlaneDistance.html
            Point-Plane Distance
            PointPlaneDistance

            Given a plane

             ax+by+cz+d=0
            (1)

            and a point x_0=(x_0,y_0,z_0), the normal to the plane is given by

             v=[a; b; c],
            (2)

            and a vector from the plane to the point is given by

             w=-[x-x_0; y-y_0; z-z_0].
            (3)

            Projecting w onto v gives the distance D from the point to the plane as

            D = |proj_(v)w|
            (4)
            = (|v·w|)/(|v|)
            (5)
            = (|a(x-x_0)+b(y-y_0)+c(z-z_0)|)/(sqrt(a^2+b^2+c^2))
            (6)
            = (|ax+by+cz-ax_0-by_0-cz_0|)/(sqrt(a^2+b^2+c^2))
            (7)
            = (|ax_0+by_0+cz_0+d|)/(sqrt(a^2+b^2+c^2)).
            (8)

            Dropping the absolute value signs gives the signed distance,

             D=(ax_0+by_0+cz_0+d)/(sqrt(a^2+b^2+c^2)),
            (9)

            which is positive if x_0 is on the same side of the plane as the normal vector v and negative if it is on the opposite side.

            This can be expressed particularly conveniently for a plane specified in Hessian normal form by the simple equation

             D=n^^·x_0+p,
            (10)

            where n^^=v/|v| is the unit normal vector. Therefore, the distance of the plane from the origin is simply given by p (Gellert et al. 1989, p. 541).

            Given three points x_i for i=1, 2, 3, compute the unit normal

             n^^=((x_2-x_1)x(x_3-x_1))/(|(x_2-x_1)x(x_3-x_1)|).
            (11)

            Then the distance from a point x_0 to the plane containing the three points is given by

             D_i=n^^·(x_0-x_i),
            (12)

            where x_i is any of the three points. Expanding out the coordinates shows that

             D=D_1=D_2=D_3,
            (13)

            as it must since all points are in the same plane, although this is far from obvious based on the above vector equation.

            SEE ALSO: Hessian Normal Form, Plane, Point, Projection Theorem

            REFERENCES:

            Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold, 1989.




            CITE THIS AS:

            Weisstein, Eric W. "Point-Plane Distance." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Point-PlaneDistance.html

            posted on 2009-03-24 17:18 zmj 閱讀(1078) 評論(0)  編輯 收藏 引用

            亚洲精品高清一二区久久| 久久精品国产亚洲AV无码麻豆| 久久综合九色综合97_久久久| 青青青青久久精品国产h| 国产精品欧美久久久久无广告| 深夜久久AAAAA级毛片免费看 | 久久激情五月丁香伊人| 久久久91人妻无码精品蜜桃HD| 久久亚洲精品国产精品婷婷| 精品久久人妻av中文字幕| 久久se精品一区二区影院| 亚洲精品高清国产一线久久| 久久精品国产99国产精偷 | 亚洲一区中文字幕久久| 免费一级做a爰片久久毛片潮| 亚洲AV无码久久精品成人| 久久久WWW成人免费精品| 久久久久免费看成人影片| 久久噜噜久久久精品66| 久久久久国产一级毛片高清版| 久久人人爽人人爽人人片AV高清| 亚洲乱亚洲乱淫久久| 国内精品伊人久久久久AV影院| 天天影视色香欲综合久久| 色综合久久中文色婷婷| 欧美熟妇另类久久久久久不卡| 久久99九九国产免费看小说| 国产高潮国产高潮久久久91| 精品久久8x国产免费观看| 99精品国产综合久久久久五月天| 久久久久一本毛久久久| 国产精品亚洲综合专区片高清久久久 | 少妇人妻综合久久中文字幕| 国产精品伊人久久伊人电影| 国产精品一久久香蕉国产线看观看 | 一日本道伊人久久综合影| 国产午夜福利精品久久| 亚洲嫩草影院久久精品| 色综合合久久天天综合绕视看| www.久久99| 午夜不卡888久久|