青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

計算機圖形學幾何工具算法詳解(英文目錄)

?www.mkp.com/gtcg
Geometric Tools for Computer Graphics
Philip Schneider
Industrial Light + Magic, San Francisco, California, U.S.A.
David H. Eberly
Geometric Tools, Inc., Chapel Hill, North Carolina, U.S.A.

Features & Benefits

?


  • Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors.
  • Covers problems relevant for both 2D and 3D graphics programming.
  • Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you.
  • Provides the math and geometry background you need to understand the solutions and put them to work.
  • Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode.
  • Resources associated with the book are available at the companion Web site www.mkp.com/gtcg.

Reviews


"An hour of a programmer's time often costs more than the price of a book. By this measure, you hold a volume potentially worth thousands of dollars. That it can be purchased for a fraction of this cost I consider a modern miracle. The amount of information crammed into this book is incredible." --Eric Haines

Description

?back to top



Do you spend too much time creating the building blocks of your graphics applications or finding and correcting errors? Geometric Tools for Computer Graphics is an extensive, conveniently organized collection of proven solutions to fundamental problems that you'd rather not solve over and over again, including building primitives, distance calculation, approximation, containment, decomposition, intersection determination, separation, and more.


If you have a mathematics degree, this book will save you time and trouble. If you don't, it will help you achieve things you may feel are out of your reach. Inside, each problem is clearly stated and diagrammed, and the fully detailed solutions are presented in easy-to-understand pseudocode. You also get the mathematics and geometry background needed to make optimal use of the solutions, as well as an abundance of reference material contained in a series of appendices.

Contents

?back to top


Foreword
Figures
Tables
Preface

Chapter 1 Introduction
1.1 How to Use This Book
1.2 Issues of Numerical Computation
1.2.1 Low-Level Issues
1.2.2 High-Level Issues
1.3 A Summary of the Chapters

Chapter 2 Matrices and Linear Systems
2.1 Introduction
2.1.1 Motivation
2.1.2 Organization
2.1.3 Notational Conventions
2.2 Tuples
2.2.1 Definition
2.2.2 Arithmetic Operations
2.3 Matrices
2.3.1 Notation and Terminology
2.3.2 Transposition
2.3.3 Arithmetic Operations
2.3.4 Matrix Multiplication
2.4 Linear Systems
2.4.1 Linear Equations
2.4.2 Linear Systems in Two Unknowns
2.4.3 General Linear Systems
2.4.4 Row Reductions, Echelon Form, and Rank
2.5 Square Matrices
2.5.1 Diagonal Matrices
2.5.2 Triangular Matrices
2.5.3 The Determinant
2.5.4 Inverse
2.6 Linear Spaces
2.6.1 Fields
2.6.2 Definition and Properties
2.6.3 Subspaces
2.6.4 Linear Combinations and Span
2.6.5 Linear Independence, Dimension, and Basis
2.7 Linear Mappings
2.7.1 Mappings in General
2.7.2 Linear Mappings
2.7.3 Matrix Representation of Linear Mappings
2.7.4 Cramer’s Rule
2.8 Eigenvalues and Eigenvectors
2.9 Euclidean Space
2.9.1 Inner Product Spaces
2.9.2 Orthogonality and Orthonormal Sets
2.10 Least Squares
Recommended Reading

Chapter 3 Vector Algebra
3.1 Vector Basics
3.1.1 Vector Equivalence
3.1.2 Vector Addition
3.1.3 Vector Subtraction
3.1.4 Vector Scaling
3.1.5 Properties of Vector Addition and Scalar Multiplication
3.2 Vector Space
3.2.1 Span
3.2.2 Linear Independence
3.2.3 Basis, Subspaces, and Dimension
3.2.4 Orientation
3.2.5 Change of Basis
3.2.6 Linear Transformations
3.3 Affine Spaces
3.3.1 Euclidean Geometry
3.3.2 Volume, the Determinant, and the Scalar Triple Product
3.3.3 Frames
3.4 Affine Transformations
3.4.1 Types of Affine Maps
3.4.2 Composition of Affine Maps
3.5 Barycentric Coordinates and Simplexes
3.5.1 Barycentric Coordinates and Subspaces
3.5.2 Affine Independence

Chapter 4 Matrices, Vector Algebra, and Transformations
4.1 Introduction
4.2 Matrix Representation of Points and Vectors
4.3 Addition, Subtraction, and Multiplication
4.3.1 Vector Addition and Subtraction
4.3.2 Point and Vector Addition and Subtraction
4.3.3 Subtraction of Points
4.3.4 Scalar Multiplication
4.4 Products of Vectors
4.4.1 Dot Product
4.4.2 Cross Product
4.4.3 Tensor Product
4.4.4 The “Perp” Operator and the “Perp” Dot Product
4.5 Matrix Representation of Affine Transformations
4.6 Change-of-Basis/Frame/Coordinate System
4.7 Vector Geometry of Affine Transformations
4.7.1 Notation
4.7.2 Translation
4.7.3 Rotation
4.7.4 Scaling
4.7.5 Reflection
4.7.6 Shearing
4.8 Projections
4.8.1 Orthographic
4.8.2 Oblique
4.8.3 Perspective
4.9 Transforming Normal Vectors
Recommended Reading

Chapter 5 Geometric Primitives in 2D
5.1 Linear Components
5.1.1 Implicit Form
5.1.2 Parametric Form
5.1.3 Converting between Representations
5.2 Triangles
5.3 Rectangles
5.4 Polylines and Polygons
5.5 Quadratic Curves
5.5.1 Circles
5.5.2 Ellipses
5.6 Polynomial Curves
5.6.1 B′ezier Curves
5.6.2 B-Spline Curves
5.6.3 NURBS Curves

Chapter 6 Distance in 2D
6.1 Point to Linear Component
6.1.1 Point to Line
6.1.2 Point to Ray
6.1.3 Point to Segment
6.2 Point to Polyline
6.3 Point to Polygon
6.3.1 Point to Triangle
6.3.2 Point to Rectangle
6.3.3 Point to Orthogonal Frustum
6.3.4 Point to Convex Polygon
6.4 Point to Quadratic Curve
6.5 Point to Polynomial Curve
6.6 Linear Components
6.6.1 Line to Line
6.6.2 Line to Ray
6.6.3 Line to Segment
6.6.4 Ray to Ray
6.6.5 Ray to Segment
6.6.6 Segment to Segment
6.7 Linear Component to Polyline or Polygon
6.8 Linear Component to Quadratic Curve
6.9 Linear Component to Polynomial Curve
6.10 GJK Algorithm
6.10.1 Set Operations
6.10.2 Overview of the Algorithm
6.10.3 Alternatives to GJK

Chapter 7 Intersection in 2D
7.1 Linear Components
7.2 Linear Components and Polylines
7.3 Linear Components and Quadratic Curves
7.3.1 Linear Components and General Quadratic Curves
7.3.2 Linear Components and Circular Components
7.4 Linear Components and Polynomial Curves
7.4.1 Algebraic Method
7.4.2 Polyline Approximation
7.4.3 Hierarchical Bounding
7.4.4 Monotone Decomposition
7.4.5 Rasterization
7.5 Quadratic Curves
7.5.1 General Quadratic Curves
7.5.2 Circular Components
7.5.3 Ellipses
7.6 Polynomial Curves
7.6.1 Algebraic Method
7.6.2 Polyline Approximation
7.6.3 Hierarchical Bounding
7.6.4 Rasterization
7.7 The Method of Separating Axes
7.7.1 Separation by Projection onto a Line
7.7.2 Separation of Stationary Convex Polygons
7.7.3 Separation of Moving Convex Polygons
7.7.4 Intersection Set for Stationary Convex Polygons
7.7.5 Contact Set for Moving Convex Polygons

Chapter 8 Miscellaneous 2D Problems
8.1 Circle through Three Points
8.2 Circle Tangent to Three Lines
8.3 Line Tangent to a Circle at a Given Point
8.4 Line Tangent to a Circle through a Given Point
8.5 Lines Tangent to Two Circles
8.6 Circle through Two Points with a Given Radius
8.7 Circle through a Point and Tangent to a Line with a Given Radius
8.8 Circles Tangent to Two Lines with a Given Radius
8.9 Circles through a Point and Tangent to a Circle with a Given Radius
8.10 Circles Tangent to a Line and a Circle with a Given Radius
8.11 Circles Tangent to Two Circles with a Given Radius
8.12 Line Perpendicular to a Given Line through a Given Point
8.13 Line between and Equidistant to Two Points
8.14 Line Parallel to a Given Line at a Given Distance
8.15 Line Parallel to a Given Line at a Given Vertical (Horizontal) Distance
8.16 Lines Tangent to a Given Circle and Normal to a Given Line

Chapter 9 Geometric Primitives in 3D
9.1 Linear Components
9.2 Planar Components
9.2.1 Planes
9.2.2 Coordinate System Relative to a Plane
9.2.3 2D Objects in a Plane
9.3 Polymeshes, Polyhedra, and Polytopes
9.3.1 Vertex-Edge-Face Tables
9.3.2 Connected Meshes
9.3.3 Manifold Meshes
9.3.4 Closed Meshes
9.3.5 Consistent Ordering
9.3.6 Platonic Solids
9.4 Quadric Surfaces
9.4.1 Three Nonzero Eigenvalues
9.4.2 Two Nonzero Eigenvalues
9.4.3 One Nonzero Eigenvalue
9.5 Torus
9.6 Polynomial Curves
9.6.1 Bézier Curves
9.6.2 B-Spline Curves
9.6.3 NURBS Curves
9.7 Polynomial Surfaces
9.7.1 Bézier Surfaces
9.7.2 B-Spline Surfaces
9.7.3 NURBS Surfaces

Chapter 10 Distance in 3D
10.1 Introduction
10.2 Point to Linear Component
10.2.1 Point to Ray or Line Segment
10.2.2 Point to Polyline
10.3 Point to Planar Component
10.3.1 Point to Plane
10.3.2 Point to Triangle
10.3.3 Point to Rectangle
10.3.4 Point to Polygon
10.3.5 Point to Circle or Disk
10.4 Point to Polyhedron
10.4.1 General Problem
10.4.2 Point to Oriented Bounding Box
10.4.3 Point to Orthogonal Frustum
10.5 Point to Quadric Surface
10.5.1 Point to General Quadric Surface
10.5.2 Point to Ellipsoid
10.6 Point to Polynomial Curve
10.7 Point to Polynomial Surface
10.8 Linear Components
10.8.1 Lines and Lines
10.8.2 Segment/Segment, Line/Ray, Line/Segment, Ray/Ray, Ray/Segment
10.8.3 Segment to Segment, Alternative Approach
10.9 Linear Component to Triangle, Rectangle, Tetrahedron, Oriented Box
10.9.1 Linear Component to Triangle
10.9.2 Linear Component to Rectangle
10.9.3 Linear Component to Tetrahedron
10.9.4 Linear Component to Oriented Bounding Box
10.10 Line to Quadric Surface
10.11 Line to Polynomial Surface
10.12 GJK Algorithm
10.13 Miscellaneous
10.13.1 Distance between Line and Planar Curve
10.13.2 Distance between Line and Planar Solid Object
10.13.3 Distance between Planar Curves
10.13.4 Geodesic Distance on Surfaces

Chapter 11 Intersection in 3D
11.1 Linear Components and Planar Components
11.1.1 Linear Components and Planes
11.1.2 Linear Components and Triangles
11.1.3 Linear Components and Polygons
11.1.4 Linear Component and Disk
11.2 Linear Components and Polyhedra
11.3 Linear Components and Quadric Surfaces
11.3.1 General Quadric Surfaces
11.3.2 Linear Components and a Sphere
11.3.3 Linear Components and an Ellipsoid
11.3.4 Linear Components and Cylinders
11.3.5 Linear Components and a Cone
11.4 Linear Components and Polynomial Surfaces
11.4.1 Algebraic Surfaces
11.4.2 Free-Form Surfaces
11.5 Planar Components
11.5.1 Two Planes
11.5.2 Three Planes
11.5.3 Triangle and Plane
11.5.4 Triangle and Triangle
11.6 Planar Components and Polyhedra
11.6.1 Trimeshes
11.6.2 General Polyhedra
11.7 Planar Components and Quadric Surface
11.7.1 Plane and General Quadric Surface
11.7.2 Plane and Sphere
11.7.3 Plane and Cylinder
11.7.4 Plane and Cone
11.7.5 Triangle and Cone
11.8 Planar Components and Polynomial Surfaces
11.8.1 Hermite Curves
11.8.2 Geometry Definitions
11.8.3 Computing the Curves
11.8.4 The Algorithm
11.8.5 Implementation Notes
11.9 Quadric Surfaces
11.9.1 General Intersection
11.9.2 Ellipsoids
11.10 Polynomial Surfaces
11.10.1 Subdivision Methods
11.10.2 Lattice Evaluation
11.10.3 Analytic Methods
11.10.4 Marching Methods
11.11 The Method of Separating Axes
11.11.1 Separation of Stationary Convex Polyhedra
11.11.2 Separation of Moving Convex Polyhedra
11.11.3 Intersection Set for Stationary Convex Polyhedra
11.11.4 Contact Set for Moving Convex Polyhedra
11.12 Miscellaneous
11.12.1 Oriented Bounding Box and Orthogonal Frustum
11.12.2 Linear Component and Axis-Aligned Bounding Box
11.12.3 Linear Component and Oriented Bounding Box
11.12.4 Plane and Axis-Aligned Bounding Box
11.12.5 Plane and Oriented Bounding Box
11.12.6 Axis-Aligned Bounding Boxes
11.12.7 Oriented Bounding Boxes
11.12.8 Sphere and Axis-Aligned Bounding Box
11.12.9 Cylinders
11.12.10 Linear Component and Torus

Chapter 12 Miscellaneous 3D Problems
12.1 Projection of a Point onto a Plane
12.2 Projection of a Vector onto a Plane
12.3 Angle between a Line and a Plane
12.4 Angle between Two Planes
12.5 Plane Normal to a Line and through a Given Point
12.6 Plane through Three Points
12.7 Angle between Two Lines

Chapter 13 Computational Geometry Topics
13.1 Binary Space-Partitioning Trees in 2D
13.1.1 BSP Tree Representation of a Polygon
13.1.2 Minimum Splits versus Balanced Trees
13.1.3 Point in Polygon Using BSP Trees
13.1.4 Partitioning a Line Segment by a BSP Tree
13.2 Binary Space-Partitioning Trees in 3D
13.2.1 BSP Tree Representation of a Polyhedron
13.2.2 Minimum Splits versus Balanced Trees
13.2.3 Point in Polyhedron Using BSP Trees
13.2.4 Partitioning a Line Segment by a BSP Tree
13.2.5 Partitioning a Convex Polygon by a BSP Tree
13.3 Point in Polygon
13.3.1 Point in Triangle
13.3.2 Point in Convex Polygon
13.3.3 Point in General Polygon
13.3.4 Faster Point in General Polygon
13.3.5 A Grid Method
13.4 Point in Polyhedron
13.4.1 Point in Tetrahedron
13.4.2 Point in Convex Polyhedron
13.4.3 Point in General Polyhedron
13.5 Boolean Operations on Polygons
13.5.1 The Abstract Operations
13.5.2 The Two Primitive Operations
13.5.3 Boolean Operations Using BSP Trees
13.5.4 Other Algorithms
13.6 Boolean Operations on Polyhedra
13.6.1 Abstract Operations
13.6.2 Boolean Operations Using BSP Trees
13.7 Convex Hulls
13.7.1 Convex Hulls in 2D
13.7.2 Convex Hulls in 3D
13.7.3 Convex Hulls in Higher Dimensions
13.8 Delaunay Triangulation
13.8.1 Incremental Construction in 2D
13.8.2 Incremental Construction in General Dimensions
13.8.3 Construction by Convex Hull
13.9 Polygon Partitioning
13.9.1 Visibility Graph of a Simple Polygon
13.9.2 Triangulation
13.9.3 Triangulation by Horizontal Decomposition
13.9.4 Convex Partitioning
13.10 Circumscribed and Inscribed Balls
13.10.1 Circumscribed Ball
13.10.2 Inscribed Ball
13.11 Minimum Bounds for Point Set
13.11.1 Minimum-Area Rectangle
13.11.2 Minimum-Volume Box
13.11.3 Minimum-Area Circle
13.11.4 Minimum-Volume Sphere
13.11.5 Miscellaneous
13.12 Area and Volume Measurements
13.12.1 Area of a 2D Polygon
13.12.2 Area of a 3D Polygon
13.12.3 Volume of a Polyhedron

Appendix A Numerical Methods
A.1 Solving Linear Systems
A.1.1 Special Case: Solving a Triangular System
A.1.2 Gaussian Elimination
A.2 Systems of Polynomials
A.2.1 Linear Equations in One Formal Variable
A.2.2 Any-Degree Equations in One Formal Variable
A.2.3 Any-Degree Equations in Any Formal Variables
A.3 Matrix Decompositions
A.3.1 Euler Angle Factorization
A.3.2 QR Decomposition
A.3.3 Eigendecomposition
A.3.4 Polar Decomposition
A.3.5 Singular Value Decomposition
A.4 Representations of 3D Rotations
A.4.1 Matrix Representation
A.4.2 Axis-Angle Representation
A.4.3 Quaternion Representation
A.4.4 Performance Issues
A.5 Root Finding
A.5.1 Methods in One Dimension
A.5.2 Methods in Many Dimensions
A.5.3 Stable Solution to Quadratic Equations
A.6 Minimization
A.6.1 Methods in One Dimension
A.6.2 Methods in Many Dimensions
A.6.3 Minimizing a Quadratic Form
A.6.4 Minimizing a Restricted Quadratic Form
A.7 Least Squares Fitting
A.7.1 Linear Fitting of Points (x, f (x))
A.7.2 Linear Fitting of Points Using Orthogonal Regression
A.7.3 Planar Fitting of Points (x, y, f (x, y))
A.7.4 Hyperplanar Fitting of Points Using Orthogonal Regression
A.7.5 Fitting a Circle to 2D Points
A.7.6 Fitting a Sphere to 3D Points
A.7.7 Fitting a Quadratic Curve to 2D Points
A.7.8 Fitting a Quadric Surface to 3D Points
A.8 Subdivision of Curves
A.8.1 Subdivision by Uniform Sampling
A.8.2 Subdivision by Arc Length
A.8.3 Subdivision by Midpoint Distance
A.8.4 Subdivision by Variation
A.9 Topics from Calculus
A.9.1 Level Sets
A.9.2 Minima and Maxima of Functions
A.9.3 Lagrange Multipliers

Appendix B Trigonometry
B.1 Introduction
B.1.1 Terminology
B.1.2 Angles
B.1.3 Conversion Examples
B.2 Trigonometric Functions
B.2.1 Definitions in Terms of Exponentials
B.2.2 Domains and Ranges
B.2.3 Graphs of Trigonometric Functions
B.2.4 Derivatives of Trigonometric Functions
B.2.5 Integration
B.3 Trigonometric Identities and Laws
B.3.1 Periodicity
B.3.2 Laws
B.3.3 Formulas
B.4 Inverse Trigonometric Functions
B.4.1 Defining arcsin and arccos in Terms of arctan
B.4.2 Domains and Ranges
B.4.3 Graphs
B.4.4 Derivatives
B.4.5 Integration
B.5 Further Reading

Appendix C Basic Formulas for Geometric Primitives
C.1 Introduction
C.2 Triangles
C.2.1 Symbols
C.2.2 Definitions
C.2.3 Right Triangles
C.2.4 Equilateral Triangle
C.2.5 General Triangle
C.3 Quadrilaterals
C.3.1 Square
C.3.2 Rectangle
C.3.3 Parallelogram
C.3.4 Rhombus
C.3.5 Trapezoid
C.3.6 General Quadrilateral
C.4 Circles
C.4.1 Symbols
C.4.2 Full Circle
C.4.3 Sector of a Circle
C.4.4 Segment of a Circle
C.5 Polyhedra
C.5.1 Symbols
C.5.2 Box
C.5.3 Prism
C.5.4 Pyramid
C.6 Cylinder
C.7 Cone
C.8 Spheres
C.8.1 Segments
C.8.2 Sector
C.9 Torus

References
Index
About the Authors

posted on 2006-11-26 17:59 zmj 閱讀(2381) 評論(1)  編輯 收藏 引用

評論

# re: 計算機圖形學幾何工具算法詳解(英文目錄) 2007-08-07 11:43 sunjunling

hao  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美中文字幕视频| 久久国产乱子精品免费女| 亚洲影院高清在线| 午夜精品成人在线视频| 日韩一级免费观看| 亚洲伦理一区| 亚洲国产经典视频| 久久夜色精品国产亚洲aⅴ| 亚洲毛片在线| 99国内精品| 亚洲最黄网站| 亚洲综合三区| 久久精品视频网| 久久香蕉国产线看观看av| 午夜精品国产更新| 午夜精品在线视频| 另类综合日韩欧美亚洲| 免费看成人av| 日韩视频在线一区二区三区| 99v久久综合狠狠综合久久| 一本一本久久a久久精品综合妖精| 亚洲精品美女91| 羞羞答答国产精品www一本| 久久久久久久性| 欧美激情小视频| 国产精品日韩电影| 亚洲国产cao| 亚洲影视九九影院在线观看| 久久精品国产欧美亚洲人人爽| 久久久欧美精品| 亚洲精品视频免费| 久久综合给合久久狠狠狠97色69| 美国十次成人| 国产视频久久| 性久久久久久久久久久久| 亚洲第一毛片| 老牛影视一区二区三区| 国产精品老牛| 国产精品激情偷乱一区二区∴| 国产美女精品视频| 亚洲尤物视频网| 中文高清一区| 欧美三级日本三级少妇99| 亚洲国产高清一区| 欧美成人午夜免费视在线看片| 久久人人97超碰精品888| 久久成人精品视频| 亚洲欧美久久久| 国产精品久久影院| 香蕉国产精品偷在线观看不卡 | 亚洲专区在线视频| 国产精品成人观看视频免费| 一本色道久久综合精品竹菊| 亚洲精品字幕| 国产精品久久久久国产a级| 野花国产精品入口| 亚洲深夜av| 黑人操亚洲美女惩罚| 欧美一区二区在线免费播放| 亚洲毛片av| 欧美视频在线观看视频极品| 亚洲欧美99| 久久久久久夜| 亚洲欧美日韩国产一区二区三区| 香蕉乱码成人久久天堂爱免费| 国产日韩在线播放| 一本色道久久综合亚洲精品不卡| 国产伦精品一区| 亚洲毛片在线| 激情成人亚洲| 中日韩男男gay无套 | 一本不卡影院| 亚洲欧美视频在线| 亚洲永久网站| 国产精品久久久久久久第一福利| 久久久久一区二区三区| 国产精品美女一区二区在线观看| 欧美激情aⅴ一区二区三区| 国产精品夫妻自拍| 一本久道久久综合中文字幕| 91久久精品美女高潮| 久热成人在线视频| 久久色中文字幕| 黑丝一区二区| 久久青草久久| 麻豆av一区二区三区久久| 欧美视频一区二区三区…| 日韩视频在线播放| 性伦欧美刺激片在线观看| 国产午夜精品视频| 激情综合激情| 99视频日韩| 欧美一区成人| 国产亚洲精品一区二区| 久久大逼视频| 亚洲国产女人aaa毛片在线| 亚洲国产婷婷香蕉久久久久久| 蜜月aⅴ免费一区二区三区| 亚洲精品无人区| 欧美一区在线看| 日韩性生活视频| 国产日产亚洲精品| 久久久999国产| 亚洲成在人线av| 亚洲欧美日韩国产成人精品影院| 在线日韩欧美| 国产噜噜噜噜噜久久久久久久久| 久久精品久久99精品久久| 亚洲精品国产精品乱码不99| 国产精品入口夜色视频大尺度| 亚洲一区二区三区影院| 亚洲国产经典视频| 久久人人爽人人爽| 久久久久国内| 久久av免费一区| 香蕉尹人综合在线观看| 亚洲午夜一区二区| 日韩一级黄色大片| 一本色道久久综合亚洲精品婷婷| 一区久久精品| 亚洲青涩在线| 亚洲精品久久久久久一区二区| 国产一区二区中文| 欧美人与禽猛交乱配| 欧美成年人网站| 欧美成人精品高清在线播放| 免费日韩视频| 欧美日本免费一区二区三区| 欧美国产精品v| 欧美日韩国产一区二区三区地区| 欧美国产一区二区| 国产精品入口| 国产色爱av资源综合区| 国产主播一区二区| 亚洲黄色天堂| 午夜精品久久久久久久99水蜜桃 | 亚洲欧洲av一区二区三区久久| 一区二区三区国产精华| 国产精品久久久久av免费| 欧美精品v日韩精品v国产精品| 欧美国产在线电影| 国产麻豆91精品| 亚洲动漫精品| 欧美在线综合| 日韩亚洲国产欧美| 免费观看成人www动漫视频| 亚洲日本成人网| 亚洲天堂成人在线观看| 久久综合999| 在线观看视频亚洲| 欧美在线亚洲在线| 在线视频精品一区| 欧美日韩国产精品| 亚洲福利精品| 蜜桃久久精品乱码一区二区| 亚洲美女区一区| 欧美成人精品在线观看| 狠狠做深爱婷婷久久综合一区| 欧美一激情一区二区三区| 亚洲黄色视屏| 欧美日韩成人综合在线一区二区 | 欧美日韩高清区| 亚洲国产一区二区视频| 欧美ab在线视频| 蜜桃av久久久亚洲精品| 亚洲啪啪91| 亚洲午夜激情| 国内成+人亚洲+欧美+综合在线| 久久精品亚洲一区二区| 久久天天躁狠狠躁夜夜爽蜜月| 精品av久久久久电影| 亚洲无限乱码一二三四麻| 欧美三级在线视频| 亚洲欧美在线免费| 久久免费视频在线观看| 亚洲人成亚洲人成在线观看| 99天天综合性| 禁久久精品乱码| 这里是久久伊人| 91久久精品国产91久久| 亚洲在线视频| 亚洲美女色禁图| 欧美主播一区二区三区| 一区二区三区视频免费在线观看 | 亚洲欧美日韩国产精品| 久久久久综合一区二区三区| 久久久久国产精品人| 亚洲一区免费| 免费美女久久99| 久久亚洲国产精品一区二区| 女人香蕉久久**毛片精品| 美女黄网久久| 欧美在线电影| 国产精品青草久久| 亚洲美女黄色片| 一区二区欧美日韩视频| 欧美 日韩 国产在线| 亚洲成人在线视频网站| 亚洲国产成人精品视频| 久久精品一区二区三区不卡牛牛|