青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

計算機圖形學(xué)幾何工具算法詳解(英文目錄)

?www.mkp.com/gtcg
Geometric Tools for Computer Graphics
Philip Schneider
Industrial Light + Magic, San Francisco, California, U.S.A.
David H. Eberly
Geometric Tools, Inc., Chapel Hill, North Carolina, U.S.A.

Features & Benefits

?


  • Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors.
  • Covers problems relevant for both 2D and 3D graphics programming.
  • Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you.
  • Provides the math and geometry background you need to understand the solutions and put them to work.
  • Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode.
  • Resources associated with the book are available at the companion Web site www.mkp.com/gtcg.

Reviews


"An hour of a programmer's time often costs more than the price of a book. By this measure, you hold a volume potentially worth thousands of dollars. That it can be purchased for a fraction of this cost I consider a modern miracle. The amount of information crammed into this book is incredible." --Eric Haines

Description

?back to top



Do you spend too much time creating the building blocks of your graphics applications or finding and correcting errors? Geometric Tools for Computer Graphics is an extensive, conveniently organized collection of proven solutions to fundamental problems that you'd rather not solve over and over again, including building primitives, distance calculation, approximation, containment, decomposition, intersection determination, separation, and more.


If you have a mathematics degree, this book will save you time and trouble. If you don't, it will help you achieve things you may feel are out of your reach. Inside, each problem is clearly stated and diagrammed, and the fully detailed solutions are presented in easy-to-understand pseudocode. You also get the mathematics and geometry background needed to make optimal use of the solutions, as well as an abundance of reference material contained in a series of appendices.

Contents

?back to top


Foreword
Figures
Tables
Preface

Chapter 1 Introduction
1.1 How to Use This Book
1.2 Issues of Numerical Computation
1.2.1 Low-Level Issues
1.2.2 High-Level Issues
1.3 A Summary of the Chapters

Chapter 2 Matrices and Linear Systems
2.1 Introduction
2.1.1 Motivation
2.1.2 Organization
2.1.3 Notational Conventions
2.2 Tuples
2.2.1 Definition
2.2.2 Arithmetic Operations
2.3 Matrices
2.3.1 Notation and Terminology
2.3.2 Transposition
2.3.3 Arithmetic Operations
2.3.4 Matrix Multiplication
2.4 Linear Systems
2.4.1 Linear Equations
2.4.2 Linear Systems in Two Unknowns
2.4.3 General Linear Systems
2.4.4 Row Reductions, Echelon Form, and Rank
2.5 Square Matrices
2.5.1 Diagonal Matrices
2.5.2 Triangular Matrices
2.5.3 The Determinant
2.5.4 Inverse
2.6 Linear Spaces
2.6.1 Fields
2.6.2 Definition and Properties
2.6.3 Subspaces
2.6.4 Linear Combinations and Span
2.6.5 Linear Independence, Dimension, and Basis
2.7 Linear Mappings
2.7.1 Mappings in General
2.7.2 Linear Mappings
2.7.3 Matrix Representation of Linear Mappings
2.7.4 Cramer’s Rule
2.8 Eigenvalues and Eigenvectors
2.9 Euclidean Space
2.9.1 Inner Product Spaces
2.9.2 Orthogonality and Orthonormal Sets
2.10 Least Squares
Recommended Reading

Chapter 3 Vector Algebra
3.1 Vector Basics
3.1.1 Vector Equivalence
3.1.2 Vector Addition
3.1.3 Vector Subtraction
3.1.4 Vector Scaling
3.1.5 Properties of Vector Addition and Scalar Multiplication
3.2 Vector Space
3.2.1 Span
3.2.2 Linear Independence
3.2.3 Basis, Subspaces, and Dimension
3.2.4 Orientation
3.2.5 Change of Basis
3.2.6 Linear Transformations
3.3 Affine Spaces
3.3.1 Euclidean Geometry
3.3.2 Volume, the Determinant, and the Scalar Triple Product
3.3.3 Frames
3.4 Affine Transformations
3.4.1 Types of Affine Maps
3.4.2 Composition of Affine Maps
3.5 Barycentric Coordinates and Simplexes
3.5.1 Barycentric Coordinates and Subspaces
3.5.2 Affine Independence

Chapter 4 Matrices, Vector Algebra, and Transformations
4.1 Introduction
4.2 Matrix Representation of Points and Vectors
4.3 Addition, Subtraction, and Multiplication
4.3.1 Vector Addition and Subtraction
4.3.2 Point and Vector Addition and Subtraction
4.3.3 Subtraction of Points
4.3.4 Scalar Multiplication
4.4 Products of Vectors
4.4.1 Dot Product
4.4.2 Cross Product
4.4.3 Tensor Product
4.4.4 The “Perp” Operator and the “Perp” Dot Product
4.5 Matrix Representation of Affine Transformations
4.6 Change-of-Basis/Frame/Coordinate System
4.7 Vector Geometry of Affine Transformations
4.7.1 Notation
4.7.2 Translation
4.7.3 Rotation
4.7.4 Scaling
4.7.5 Reflection
4.7.6 Shearing
4.8 Projections
4.8.1 Orthographic
4.8.2 Oblique
4.8.3 Perspective
4.9 Transforming Normal Vectors
Recommended Reading

Chapter 5 Geometric Primitives in 2D
5.1 Linear Components
5.1.1 Implicit Form
5.1.2 Parametric Form
5.1.3 Converting between Representations
5.2 Triangles
5.3 Rectangles
5.4 Polylines and Polygons
5.5 Quadratic Curves
5.5.1 Circles
5.5.2 Ellipses
5.6 Polynomial Curves
5.6.1 B′ezier Curves
5.6.2 B-Spline Curves
5.6.3 NURBS Curves

Chapter 6 Distance in 2D
6.1 Point to Linear Component
6.1.1 Point to Line
6.1.2 Point to Ray
6.1.3 Point to Segment
6.2 Point to Polyline
6.3 Point to Polygon
6.3.1 Point to Triangle
6.3.2 Point to Rectangle
6.3.3 Point to Orthogonal Frustum
6.3.4 Point to Convex Polygon
6.4 Point to Quadratic Curve
6.5 Point to Polynomial Curve
6.6 Linear Components
6.6.1 Line to Line
6.6.2 Line to Ray
6.6.3 Line to Segment
6.6.4 Ray to Ray
6.6.5 Ray to Segment
6.6.6 Segment to Segment
6.7 Linear Component to Polyline or Polygon
6.8 Linear Component to Quadratic Curve
6.9 Linear Component to Polynomial Curve
6.10 GJK Algorithm
6.10.1 Set Operations
6.10.2 Overview of the Algorithm
6.10.3 Alternatives to GJK

Chapter 7 Intersection in 2D
7.1 Linear Components
7.2 Linear Components and Polylines
7.3 Linear Components and Quadratic Curves
7.3.1 Linear Components and General Quadratic Curves
7.3.2 Linear Components and Circular Components
7.4 Linear Components and Polynomial Curves
7.4.1 Algebraic Method
7.4.2 Polyline Approximation
7.4.3 Hierarchical Bounding
7.4.4 Monotone Decomposition
7.4.5 Rasterization
7.5 Quadratic Curves
7.5.1 General Quadratic Curves
7.5.2 Circular Components
7.5.3 Ellipses
7.6 Polynomial Curves
7.6.1 Algebraic Method
7.6.2 Polyline Approximation
7.6.3 Hierarchical Bounding
7.6.4 Rasterization
7.7 The Method of Separating Axes
7.7.1 Separation by Projection onto a Line
7.7.2 Separation of Stationary Convex Polygons
7.7.3 Separation of Moving Convex Polygons
7.7.4 Intersection Set for Stationary Convex Polygons
7.7.5 Contact Set for Moving Convex Polygons

Chapter 8 Miscellaneous 2D Problems
8.1 Circle through Three Points
8.2 Circle Tangent to Three Lines
8.3 Line Tangent to a Circle at a Given Point
8.4 Line Tangent to a Circle through a Given Point
8.5 Lines Tangent to Two Circles
8.6 Circle through Two Points with a Given Radius
8.7 Circle through a Point and Tangent to a Line with a Given Radius
8.8 Circles Tangent to Two Lines with a Given Radius
8.9 Circles through a Point and Tangent to a Circle with a Given Radius
8.10 Circles Tangent to a Line and a Circle with a Given Radius
8.11 Circles Tangent to Two Circles with a Given Radius
8.12 Line Perpendicular to a Given Line through a Given Point
8.13 Line between and Equidistant to Two Points
8.14 Line Parallel to a Given Line at a Given Distance
8.15 Line Parallel to a Given Line at a Given Vertical (Horizontal) Distance
8.16 Lines Tangent to a Given Circle and Normal to a Given Line

Chapter 9 Geometric Primitives in 3D
9.1 Linear Components
9.2 Planar Components
9.2.1 Planes
9.2.2 Coordinate System Relative to a Plane
9.2.3 2D Objects in a Plane
9.3 Polymeshes, Polyhedra, and Polytopes
9.3.1 Vertex-Edge-Face Tables
9.3.2 Connected Meshes
9.3.3 Manifold Meshes
9.3.4 Closed Meshes
9.3.5 Consistent Ordering
9.3.6 Platonic Solids
9.4 Quadric Surfaces
9.4.1 Three Nonzero Eigenvalues
9.4.2 Two Nonzero Eigenvalues
9.4.3 One Nonzero Eigenvalue
9.5 Torus
9.6 Polynomial Curves
9.6.1 Bézier Curves
9.6.2 B-Spline Curves
9.6.3 NURBS Curves
9.7 Polynomial Surfaces
9.7.1 Bézier Surfaces
9.7.2 B-Spline Surfaces
9.7.3 NURBS Surfaces

Chapter 10 Distance in 3D
10.1 Introduction
10.2 Point to Linear Component
10.2.1 Point to Ray or Line Segment
10.2.2 Point to Polyline
10.3 Point to Planar Component
10.3.1 Point to Plane
10.3.2 Point to Triangle
10.3.3 Point to Rectangle
10.3.4 Point to Polygon
10.3.5 Point to Circle or Disk
10.4 Point to Polyhedron
10.4.1 General Problem
10.4.2 Point to Oriented Bounding Box
10.4.3 Point to Orthogonal Frustum
10.5 Point to Quadric Surface
10.5.1 Point to General Quadric Surface
10.5.2 Point to Ellipsoid
10.6 Point to Polynomial Curve
10.7 Point to Polynomial Surface
10.8 Linear Components
10.8.1 Lines and Lines
10.8.2 Segment/Segment, Line/Ray, Line/Segment, Ray/Ray, Ray/Segment
10.8.3 Segment to Segment, Alternative Approach
10.9 Linear Component to Triangle, Rectangle, Tetrahedron, Oriented Box
10.9.1 Linear Component to Triangle
10.9.2 Linear Component to Rectangle
10.9.3 Linear Component to Tetrahedron
10.9.4 Linear Component to Oriented Bounding Box
10.10 Line to Quadric Surface
10.11 Line to Polynomial Surface
10.12 GJK Algorithm
10.13 Miscellaneous
10.13.1 Distance between Line and Planar Curve
10.13.2 Distance between Line and Planar Solid Object
10.13.3 Distance between Planar Curves
10.13.4 Geodesic Distance on Surfaces

Chapter 11 Intersection in 3D
11.1 Linear Components and Planar Components
11.1.1 Linear Components and Planes
11.1.2 Linear Components and Triangles
11.1.3 Linear Components and Polygons
11.1.4 Linear Component and Disk
11.2 Linear Components and Polyhedra
11.3 Linear Components and Quadric Surfaces
11.3.1 General Quadric Surfaces
11.3.2 Linear Components and a Sphere
11.3.3 Linear Components and an Ellipsoid
11.3.4 Linear Components and Cylinders
11.3.5 Linear Components and a Cone
11.4 Linear Components and Polynomial Surfaces
11.4.1 Algebraic Surfaces
11.4.2 Free-Form Surfaces
11.5 Planar Components
11.5.1 Two Planes
11.5.2 Three Planes
11.5.3 Triangle and Plane
11.5.4 Triangle and Triangle
11.6 Planar Components and Polyhedra
11.6.1 Trimeshes
11.6.2 General Polyhedra
11.7 Planar Components and Quadric Surface
11.7.1 Plane and General Quadric Surface
11.7.2 Plane and Sphere
11.7.3 Plane and Cylinder
11.7.4 Plane and Cone
11.7.5 Triangle and Cone
11.8 Planar Components and Polynomial Surfaces
11.8.1 Hermite Curves
11.8.2 Geometry Definitions
11.8.3 Computing the Curves
11.8.4 The Algorithm
11.8.5 Implementation Notes
11.9 Quadric Surfaces
11.9.1 General Intersection
11.9.2 Ellipsoids
11.10 Polynomial Surfaces
11.10.1 Subdivision Methods
11.10.2 Lattice Evaluation
11.10.3 Analytic Methods
11.10.4 Marching Methods
11.11 The Method of Separating Axes
11.11.1 Separation of Stationary Convex Polyhedra
11.11.2 Separation of Moving Convex Polyhedra
11.11.3 Intersection Set for Stationary Convex Polyhedra
11.11.4 Contact Set for Moving Convex Polyhedra
11.12 Miscellaneous
11.12.1 Oriented Bounding Box and Orthogonal Frustum
11.12.2 Linear Component and Axis-Aligned Bounding Box
11.12.3 Linear Component and Oriented Bounding Box
11.12.4 Plane and Axis-Aligned Bounding Box
11.12.5 Plane and Oriented Bounding Box
11.12.6 Axis-Aligned Bounding Boxes
11.12.7 Oriented Bounding Boxes
11.12.8 Sphere and Axis-Aligned Bounding Box
11.12.9 Cylinders
11.12.10 Linear Component and Torus

Chapter 12 Miscellaneous 3D Problems
12.1 Projection of a Point onto a Plane
12.2 Projection of a Vector onto a Plane
12.3 Angle between a Line and a Plane
12.4 Angle between Two Planes
12.5 Plane Normal to a Line and through a Given Point
12.6 Plane through Three Points
12.7 Angle between Two Lines

Chapter 13 Computational Geometry Topics
13.1 Binary Space-Partitioning Trees in 2D
13.1.1 BSP Tree Representation of a Polygon
13.1.2 Minimum Splits versus Balanced Trees
13.1.3 Point in Polygon Using BSP Trees
13.1.4 Partitioning a Line Segment by a BSP Tree
13.2 Binary Space-Partitioning Trees in 3D
13.2.1 BSP Tree Representation of a Polyhedron
13.2.2 Minimum Splits versus Balanced Trees
13.2.3 Point in Polyhedron Using BSP Trees
13.2.4 Partitioning a Line Segment by a BSP Tree
13.2.5 Partitioning a Convex Polygon by a BSP Tree
13.3 Point in Polygon
13.3.1 Point in Triangle
13.3.2 Point in Convex Polygon
13.3.3 Point in General Polygon
13.3.4 Faster Point in General Polygon
13.3.5 A Grid Method
13.4 Point in Polyhedron
13.4.1 Point in Tetrahedron
13.4.2 Point in Convex Polyhedron
13.4.3 Point in General Polyhedron
13.5 Boolean Operations on Polygons
13.5.1 The Abstract Operations
13.5.2 The Two Primitive Operations
13.5.3 Boolean Operations Using BSP Trees
13.5.4 Other Algorithms
13.6 Boolean Operations on Polyhedra
13.6.1 Abstract Operations
13.6.2 Boolean Operations Using BSP Trees
13.7 Convex Hulls
13.7.1 Convex Hulls in 2D
13.7.2 Convex Hulls in 3D
13.7.3 Convex Hulls in Higher Dimensions
13.8 Delaunay Triangulation
13.8.1 Incremental Construction in 2D
13.8.2 Incremental Construction in General Dimensions
13.8.3 Construction by Convex Hull
13.9 Polygon Partitioning
13.9.1 Visibility Graph of a Simple Polygon
13.9.2 Triangulation
13.9.3 Triangulation by Horizontal Decomposition
13.9.4 Convex Partitioning
13.10 Circumscribed and Inscribed Balls
13.10.1 Circumscribed Ball
13.10.2 Inscribed Ball
13.11 Minimum Bounds for Point Set
13.11.1 Minimum-Area Rectangle
13.11.2 Minimum-Volume Box
13.11.3 Minimum-Area Circle
13.11.4 Minimum-Volume Sphere
13.11.5 Miscellaneous
13.12 Area and Volume Measurements
13.12.1 Area of a 2D Polygon
13.12.2 Area of a 3D Polygon
13.12.3 Volume of a Polyhedron

Appendix A Numerical Methods
A.1 Solving Linear Systems
A.1.1 Special Case: Solving a Triangular System
A.1.2 Gaussian Elimination
A.2 Systems of Polynomials
A.2.1 Linear Equations in One Formal Variable
A.2.2 Any-Degree Equations in One Formal Variable
A.2.3 Any-Degree Equations in Any Formal Variables
A.3 Matrix Decompositions
A.3.1 Euler Angle Factorization
A.3.2 QR Decomposition
A.3.3 Eigendecomposition
A.3.4 Polar Decomposition
A.3.5 Singular Value Decomposition
A.4 Representations of 3D Rotations
A.4.1 Matrix Representation
A.4.2 Axis-Angle Representation
A.4.3 Quaternion Representation
A.4.4 Performance Issues
A.5 Root Finding
A.5.1 Methods in One Dimension
A.5.2 Methods in Many Dimensions
A.5.3 Stable Solution to Quadratic Equations
A.6 Minimization
A.6.1 Methods in One Dimension
A.6.2 Methods in Many Dimensions
A.6.3 Minimizing a Quadratic Form
A.6.4 Minimizing a Restricted Quadratic Form
A.7 Least Squares Fitting
A.7.1 Linear Fitting of Points (x, f (x))
A.7.2 Linear Fitting of Points Using Orthogonal Regression
A.7.3 Planar Fitting of Points (x, y, f (x, y))
A.7.4 Hyperplanar Fitting of Points Using Orthogonal Regression
A.7.5 Fitting a Circle to 2D Points
A.7.6 Fitting a Sphere to 3D Points
A.7.7 Fitting a Quadratic Curve to 2D Points
A.7.8 Fitting a Quadric Surface to 3D Points
A.8 Subdivision of Curves
A.8.1 Subdivision by Uniform Sampling
A.8.2 Subdivision by Arc Length
A.8.3 Subdivision by Midpoint Distance
A.8.4 Subdivision by Variation
A.9 Topics from Calculus
A.9.1 Level Sets
A.9.2 Minima and Maxima of Functions
A.9.3 Lagrange Multipliers

Appendix B Trigonometry
B.1 Introduction
B.1.1 Terminology
B.1.2 Angles
B.1.3 Conversion Examples
B.2 Trigonometric Functions
B.2.1 Definitions in Terms of Exponentials
B.2.2 Domains and Ranges
B.2.3 Graphs of Trigonometric Functions
B.2.4 Derivatives of Trigonometric Functions
B.2.5 Integration
B.3 Trigonometric Identities and Laws
B.3.1 Periodicity
B.3.2 Laws
B.3.3 Formulas
B.4 Inverse Trigonometric Functions
B.4.1 Defining arcsin and arccos in Terms of arctan
B.4.2 Domains and Ranges
B.4.3 Graphs
B.4.4 Derivatives
B.4.5 Integration
B.5 Further Reading

Appendix C Basic Formulas for Geometric Primitives
C.1 Introduction
C.2 Triangles
C.2.1 Symbols
C.2.2 Definitions
C.2.3 Right Triangles
C.2.4 Equilateral Triangle
C.2.5 General Triangle
C.3 Quadrilaterals
C.3.1 Square
C.3.2 Rectangle
C.3.3 Parallelogram
C.3.4 Rhombus
C.3.5 Trapezoid
C.3.6 General Quadrilateral
C.4 Circles
C.4.1 Symbols
C.4.2 Full Circle
C.4.3 Sector of a Circle
C.4.4 Segment of a Circle
C.5 Polyhedra
C.5.1 Symbols
C.5.2 Box
C.5.3 Prism
C.5.4 Pyramid
C.6 Cylinder
C.7 Cone
C.8 Spheres
C.8.1 Segments
C.8.2 Sector
C.9 Torus

References
Index
About the Authors

posted on 2006-11-26 17:59 zmj 閱讀(2381) 評論(1)  編輯 收藏 引用

評論

# re: 計算機圖形學(xué)幾何工具算法詳解(英文目錄) 2007-08-07 11:43 sunjunling

hao  回復(fù)  更多評論   


只有注冊用戶登錄后才能發(fā)表評論。
網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            国产无遮挡一区二区三区毛片日本| 免费观看久久久4p| 国产一区成人| 欧美性理论片在线观看片免费| 久久野战av| 欧美大片网址| 欧美三级在线| 国产欧美一区二区精品性色| 国产亚洲成精品久久| 在线观看视频欧美| 亚洲精品一区二区三区在线观看| 日韩午夜剧场| 欧美亚洲视频一区二区| 国产日韩亚洲| 国内成人精品视频| 最近中文字幕mv在线一区二区三区四区| 日韩视频在线观看一区二区| 亚洲精品看片| 久久成人精品视频| 亚洲激情欧美激情| 亚洲三级网站| 欧美亚洲色图校园春色| 牛人盗摄一区二区三区视频| 欧美天堂亚洲电影院在线播放| 国产婷婷97碰碰久久人人蜜臀| 91久久精品国产91久久| 午夜伦理片一区| 亚洲电影激情视频网站| 亚洲一二三区视频在线观看| 久久一区二区精品| 国产精品国产三级国产aⅴ无密码 国产精品国产三级国产aⅴ入口 | 99国产精品一区| 午夜精品区一区二区三| 女人色偷偷aa久久天堂| 亚洲天堂av图片| 欧美成人三级在线| 亚洲午夜一二三区视频| 国产精品综合av一区二区国产馆| 亚洲国产日韩欧美综合久久| 亚洲欧美制服另类日韩| 亚洲精品精选| 美女久久网站| 激情综合在线| 久久久999成人| 亚洲在线视频网站| 欧美理论电影在线播放| 亚洲福利小视频| 久久久91精品国产一区二区精品| 亚洲午夜在线| 欧美日韩p片| 亚洲日本va午夜在线影院| 欧美国产一区二区在线观看| 久久成人精品一区二区三区| 欧美日韩午夜剧场| 亚洲电影免费| 蜜桃久久av一区| 久久国产精品99国产精| 国产日产高清欧美一区二区三区| 亚洲视频一区二区在线观看| 亚洲国产精品国自产拍av秋霞| 久久不射2019中文字幕| 国产精品嫩草久久久久| 亚洲乱码国产乱码精品精天堂| 美女成人午夜| 久久亚洲视频| 在线播放亚洲一区| 蜜桃久久av一区| 伊大人香蕉综合8在线视| 欧美亚洲一区| 国产一区二区三区不卡在线观看| 国产精品99久久久久久久vr| 99国产精品私拍| 欧美日韩精品一区| aa国产精品| 日韩一本二本av| 国产精品久久久久久久7电影| 亚洲尤物在线视频观看| 亚洲一区二区三区四区五区黄| 国产精品羞羞答答| 久久天天躁狠狠躁夜夜av| 久久免费视频网| 亚洲国内精品| av成人福利| 国产欧美亚洲日本| 麻豆久久婷婷| 欧美mv日韩mv国产网站| 在线综合亚洲欧美在线视频| 亚洲一区视频在线| 韩日欧美一区| 亚洲精品国产视频| 国产欧美日韩亚洲| 欧美高清在线一区| 欧美日韩国产在线播放网站| 亚洲自拍16p| 欧美在线视频一区二区三区| 亚洲精品一二区| 一区二区日韩免费看| 黑人巨大精品欧美一区二区小视频| 欧美激情麻豆| 国产精品自拍在线| 欧美韩日高清| 欧美精品日韩一本| 久久国产天堂福利天堂| 欧美精品国产一区| 久久精品一本| 欧美日韩亚洲一区三区| 欧美一区二区三区的| 欧美精品日韩精品| 久久精品99国产精品酒店日本| 女人天堂亚洲aⅴ在线观看| 亚洲欧美成人一区二区三区| 免费永久网站黄欧美| 亚洲欧美美女| 日韩午夜中文字幕| 欧美一区二区视频在线观看2020| 亚洲二区精品| 小处雏高清一区二区三区| 亚洲最快最全在线视频| 久久久久一区| 欧美在线亚洲综合一区| 欧美另类高清视频在线| 欧美a级片网站| 亚洲午夜av在线| 亚洲国产影院| 欧美一区二区三区四区在线观看| 亚洲最新中文字幕| 久久野战av| 久久一区二区视频| 欧美视频中文字幕| 最新国产成人在线观看| 亚洲欧洲日产国码二区| 欧美一区二区国产| 欧美激情亚洲激情| 欧美高清hd18日本| 国外成人免费视频| 亚洲一区二区在线免费观看| 久久久久久久综合| 亚洲一品av免费观看| 一本综合精品| 欧美极品在线视频| 理论片一区二区在线| 国产一区自拍视频| 久久riav二区三区| 欧美在线观看天堂一区二区三区| 欧美日韩国产区一| 亚洲夫妻自拍| 亚洲国产欧美国产综合一区| 久久久久看片| 欧美国产欧美亚州国产日韩mv天天看完整| 一区二区在线观看av| 久久婷婷丁香| 亚洲精品欧美日韩专区| 亚洲精品中文字幕女同| 欧美啪啪成人vr| 在线视频欧美日韩| 欧美一进一出视频| 国产亚洲一二三区| 久久久久久尹人网香蕉| 欧美高清日韩| 亚洲一区二区欧美日韩| 国产乱理伦片在线观看夜一区| 欧美伊人久久久久久久久影院| 免费人成精品欧美精品| 亚洲国产精品一区在线观看不卡| 欧美精品七区| 亚洲一区二区三区久久| 久久精品亚洲国产奇米99| 国产婷婷色综合av蜜臀av| 久久久精品国产99久久精品芒果| 欧美电影免费观看大全| 亚洲激情不卡| 欧美午夜美女看片| 亚洲欧美精品在线| 一区二区三区视频观看| 亚洲免费观看高清在线观看 | 蜜臀av在线播放一区二区三区| 亚洲精品一区久久久久久| 国产精品a久久久久久| 欧美在线观看www| 欧美电影免费观看| 亚洲一区二区精品在线观看| 一区二区三区久久久| 国产日韩一区二区三区| 美女被久久久| 亚洲欧美日韩一区二区在线| 欧美黄色免费| 欧美一区二区视频97| 99国产精品国产精品毛片| 国产亚洲欧美中文| 国产精品国产三级国产aⅴ无密码| 久久久亚洲精品一区二区三区| 亚洲最新色图| 欧美国产视频一区二区| 性欧美暴力猛交69hd| 亚洲日本欧美天堂| 国产精品日韩电影| 久久综合一区二区| 亚洲欧美日韩精品久久亚洲区| 欧美激情在线观看| 久久激情综合网|