OpenGL特殊光處理
目 錄14.1 光照模型
14.2 光源位置與衰減
14.3 聚光和多光源
14.4 光源位置與方向的控制
14.5 輻射光
本章內容是基礎篇第七章的補充和提高。這一章主要講述一些特殊光效果處理,如全局環境光、雙面光照、光的衰減、聚光、多光源、光源位置的改變等等。讀者若有興趣,可以按照本章例程的方法作出許多變換,則會出現意想不到的效果,充分發揮你的藝術才能。
14.1、光照模型
OpenGL光照模型的概念由一下三部分組成:1)全局泛光強度、2)視點位置在景物附近還是在無窮遠處、3)物體的正面和背面是否分別進行光照計算。
14.1.1 全局環境光
正如前面基礎篇中所提到的一樣,每個光源都能對一個場景提供環境光。此外,還有一個環境光,它不來自任何特定的光源,即稱為全局環境光。下面用參數GL_LIGHT_MODEL_AMBIENT來說明全局環境光的RGBA強度:
GLfloat lmodel_ambient[]={0.2,0.2,0.2,1.0}; glLightModelfv(GLLIGHT_MODEL_AMBIENT,lmodel_ambient);
在這個例子中,lmodel_ambient所用的值為GL_LIGHT_MODEL_AMBIENT的缺省值。這些數值產生小量的白色環境光。
14.1.2 近視點與無窮遠視點
視點位置能影響鏡面高光的計算,也就是說,頂點的高光強度依賴于頂點法向量,從頂點到光源的方向和從頂點到視點的方向。實際上,調用光照函數并不能移動視點。但是可以對光照計算作出不同的假定,這樣視點似乎移動了。對于一個無窮遠視點,視點到任何頂點的方向保持固定,缺省時為無窮遠視點。對于一個近視點,物體每個頂點到視點的方向是不同的,需要逐個計算,從而整體性能降低,但效果更真實。下面一句函數代碼是假定為近視 點:
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER,GL_TRUE);
這個調用把視點放在視點坐標系的原點處。若要切換到無窮遠視點,只需將參數GL_TRUE 改為GL_FALSE即可。
14.1.3 雙面光照
光照計算通常是對所有多邊形進行的,無論其是正面或反面。一般情況下,設置光照條件時總是正面多邊形,因此不能對背面多邊形進行正確地光照。在基礎篇的第七章中的例子里,物體是一個球,只有正面多邊形能看到,即球的外部可見,這種情況下不必考慮背面光照。若球被砍開,其內部的曲面是可見的,那么對內部多邊形需進行光照計算,這時應該調用如下函數:
glLightModeli(LIGHT_MODEL_TWO_SIDE,GL_TRUE);
啟動雙面光照。實際上,這就是OpenGL給背面多邊形定義一個相反的法向量(相對于正面多邊形而言)。一般來說,這意味著可見正面多邊形和可見反面多邊形的法向量都面朝觀察者,而不是向里,這樣所有多邊形都能進行正確的光照。關閉雙面光照,只需將參數GL_TRUE改為GL_FALSE即可。
14.2、光源位置與衰減
在基礎篇中已經提到過,光源有無窮遠光源和近光源兩種形式。無窮遠光源又稱作定向光源,即這種光到達物體時是平行光,例如現實生活中的太陽光。近光源又稱作定位光源,光源在場景中的位置影響場景的光照效果,尤其影響光到達物體的方向。臺燈是定位光源的范例。在以前所有與光照有關的例子里都采用的是定向光源,如:
GLfloat light_position[]={1.0,1.0,1.0,0.0}; glLightfv(GL_LIGHT0,GL_POSITION,light_position);
光源位置坐標采用的齊次坐標(x, y, z, w),這里的w為0,所以相應的光源是定向光,(x, y, z)描述光源的方向,這個方向也要進行模型變換。GL_POSITION的缺省值是(0.0, 0.0, 1.0, 0.0),它定義了一個方向指向Z負軸的平行光源。若w非零,光源為定位光源。(x, y, z, w)指定光源在齊次坐標系下的具體位置,這個位置經過模型變換等在視點坐標系下保存下來。
真實的光,離光源越遠則光強越小。因為定向光源是無窮遠光源,因此距離的變換對光強的影響幾乎沒有,所以定向光沒有衰減,而定位光有衰減。OpenGL的光衰減是通過光源的發光量乘以衰減因子計算出來的。其中衰減因子在第十章表10-2中說明過。缺省狀態下,常數衰減因子是1.0,其余兩個因子都是0.0。用戶也可以自己定義這些值,如:
glLightf(GL_LIGHT0,GL_CONSTANT_ATTENUATION,2.0); glLightf(GL_LIGHT0,GL_LINEAR_ATTENUATION,1.0); glLightf(GL_LIGHT0,GL_QUADRATIC_ATTENUATION,0.5);
注意:環境光、漫反射光和鏡面光的強度都衰減,只有輻射光和全局環境光的強度不衰減。
14.3、聚光和多光源
14.3.1 聚光
定位光源可以定義成聚光燈形式,即將光的形狀限制在一個圓錐內。OpenGL中聚光的定義有以下幾步:
1)定義聚光源位置。因為聚光源也是定向光源,所以他的位置同一般定向光一樣。如:
GLfloat light_position[]={1.0,1.0,1.0,1.0}; glLightfv(GL_LIGHT0,LIGHT_POSITION,light_position);
2)定義聚光截止角。參數GL_SPOT_CUTOFF給定光錐的軸與中心線的夾角,也可說成是光錐頂角的一半,如圖14-1所示。缺省時,這個參數為180.0,即頂角為360度,光向所有的方向發射,因此聚光關閉。一般在聚光啟動情況下,聚光截止角限制在[0.0, 90.0] 之間,如下面一行代碼設置截止角為45度:
glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,45.0);
3)定義聚光方向。聚光方向決定光錐的軸,它齊次坐標定義,其缺省值為(0.0, 0.0, -1.0),即指向Z負軸。聚光方向也要進行幾何變換,其結果保存在視點坐標系中。它的定義如下:
GLfloat spot_direction[]={-1.0,-1.0,0.0}; glLightfv(GL_LIGHT0,GL_SPOT_DIRECTION,spot_direction);
4)定義聚光指數。參數GL_SPOT_EXPONENT控制光的集中程度,光錐中心的光強最大,越靠邊的光強越小,缺省時為0。如:
glLightf(GL_LIGHT0,GL_SPOT_EXPONENT,2.0);
此外,除了定義聚光指數控制光錐內光強的分布,還可利用上一節所講的衰減因子的設置來實現,因為衰減因子與光強相乘得最終光強值。
14.3.2 多光源及例程
在前面已提到過場景中最多可以設置八個光源(根據OpenGL的具體實現也許會更多一些)。在多光源情況下,OpenGL需計算每個頂點從每個光源接受的光強,這樣會增加計算量,降低性能,因此在實時仿真中最好盡可能地減少光源數目。在前面都已討論過八個光源的常數:GL_LIGHT0、GL_LIGHT1、…、LIGHT7,注意:GL_LIGHT0的參數缺省值與其它光源的參數缺省值不同。下面這段代碼定義了紅色的聚光:
GLfloat light1_ambient[]= { 0.2, 0.2, 0.2, 1.0 }; GLfloat light1_diffuse[]= { 1.0, 0.0, 0.0, 1.0 }; GLfloat light1_specular[] = { 1.0, 0.6, 0.6, 1.0 }; GLfloat light1_position[] = { -3.0, -3.0, 3.0, 1.0 }; GLfloat spot_direction[]={ 1.0,1.0,-1.0}; glLightfv(GL_LIGHT1, GL_AMBIENT, light1_ambient); glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_diffuse); glLightfv(GL_LIGHT1, GL_SPECULAR,light1_specular); glLightfv(GL_LIGHT1, GL_POSITION,light1_position); glLightf (GL_LIGHT1, GL_SPOT_CUTOFF, 30.0); glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION,spot_direction); glEnable(GL_LIGHT1); // 這段代碼描述的是一個紅色的立方體,用它來代表所定義的聚光光源 // // 可加到程序的函數display()中去。 // glPushMatrix(); glTranslated (-3.0, -3.0, 3.0); glDisable (GL_LIGHTING); glColor3f (1.0, 0.0, 0.0); auxWireCube (0.1); glEnable (GL_LIGHTING); glPopMatrix (); //////////////////////////////////////////////////////////////////
將這些代碼加到基礎篇第十章光照的例程(light2.c)中去:
例14-1 聚光和多光源運用例程(spmulght.c)
#include "glos.h" #include <GL/gl.h> #include <GL/glu.h> #include <GL/glaux.h> void myinit(void); void CALLBACK myReshape(GLsizei w, GLsizei h); void CALLBACK display(void); /* 初始化光源、材質等 */ void myinit(void) { GLfloat mat_ambient[]= { 0.2, 0.2, 0.2, 1.0 }; GLfloat mat_diffuse[]= { 0.8, 0.8, 0.8, 1.0 }; GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat mat_shininess[] = { 50.0 }; GLfloat light0_diffuse[]= { 0.0, 0.0, 1.0, 1.0}; GLfloat light0_position[] = { 1.0, 1.0, 1.0, 0.0 }; GLfloat light1_ambient[]= { 0.2, 0.2, 0.2, 1.0 }; GLfloat light1_diffuse[]= { 1.0, 0.0, 0.0, 1.0 }; GLfloat light1_specular[] = { 1.0, 0.6, 0.6, 1.0 }; GLfloat light1_position[] = { -3.0, -3.0, 3.0, 1.0 }; GLfloat spot_direction[]={ 1.0,1.0,-1.0}; glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient); glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse); glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT, GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_DIFFUSE, light0_diffuse); glLightfv(GL_LIGHT0, GL_POSITION,light0_position); glLightfv(GL_LIGHT1, GL_AMBIENT, light1_ambient); glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_diffuse); glLightfv(GL_LIGHT1, GL_SPECULAR,light1_specular); glLightfv(GL_LIGHT1, GL_POSITION,light1_position); glLightf (GL_LIGHT1, GL_SPOT_CUTOFF, 30.0); glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION,spot_direction); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_LIGHT1); glDepthFunc(GL_LESS); glEnable(GL_DEPTH_TEST); } void CALLBACK display(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix(); glTranslated (-3.0, -3.0, 3.0); glDisable (GL_LIGHTING); glColor3f (1.0, 0.0, 0.0); auxWireCube (0.1); glEnable (GL_LIGHTING); glPopMatrix (); auxSolidSphere(2.0); glFlush(); } void CALLBACK myReshape(GLsizei w, GLsizei h) { glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); if (w <= h) glOrtho (-5.5, 5.5, -5.5*(GLfloat)h/(GLfloat)w, 5.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0); else glOrtho (-5.5*(GLfloat)w/(GLfloat)h, 5.5*(GLfloat)w/(GLfloat)h, -5.5, 5.5, -10.0, 10.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void main(void) { auxInitDisplayMode (AUX_SINGLE | AUX_RGBA); auxInitPosition (0, 0, 500, 500); auxInitWindow ("Spotlight and Multi_lights "); myinit(); auxReshapeFunc (myReshape); auxMainLoop(display); }
| ||||||||
#include "glos.h" #include <GL/gl.h> #include <GL/glu.h> #include <GL/glaux.h> void myinit(void); void CALLBACK movelight (AUX_EVENTREC *event); void CALLBACK display(void); void CALLBACK myReshape(GLsizei w, GLsizei h); static int step = 0; void CALLBACK movelight (AUX_EVENTREC *event) { step = (step + 15) % 360; } void myinit (void) { GLfloat mat_diffuse[]={0.0,0.5,1.0,1.0}; GLfloat mat_ambient[]={0.0,0.2,1.0,1.0}; GLfloat light_diffuse[]={1.0,1.0,1.0,1.0}; GLfloat light_ambient[]={0.0,0.5,0.5,1.0}; glMaterialfv(GL_FRONT_AND_BACK,GL_DIFFUSE,mat_diffuse); glLightfv(GL_LIGHT0,GL_DIFFUSE,light_diffuse); glLightfv(GL_LIGHT0,GL_AMBIENT,light_ambient); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glDepthFunc(GL_LESS); glEnable(GL_DEPTH_TEST); } void CALLBACK display(void) { GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 }; glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix (); glTranslatef (0.0, 0.0, -5.0); glPushMatrix (); glRotated ((GLdouble) step, -1.0, 1.0, 1.0); glRotated (0.0, 1.0, 0.0, 0.0); glLightfv (GL_LIGHT0, GL_POSITION, position); glTranslated (0.0, 0.0, 1.5); glDisable (GL_LIGHTING); glColor3f (1.0, 1.0, 0.0); auxWireSphere (0.1); glEnable (GL_LIGHTING); glPopMatrix (); auxSolidTorus (0.275, 0.85); glPopMatrix (); glFlush (); } void CALLBACK myReshape(GLsizei w, GLsizei h) { glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0); glMatrixMode(GL_MODELVIEW); } void main(void) { auxInitDisplayMode (AUX_SINGLE | AUX_RGBA); auxInitPosition (0, 0, 500, 500); auxInitWindow ("Moving Light"); myinit(); auxMouseFunc (AUX_LEFTBUTTON, AUX_MOUSEDOWN, movelight); auxReshapeFunc (myReshape); auxMainLoop(display); }以上程序運行結果是在屏幕中央顯示一個藍色的環形圈,按下鼠標左鍵則可移動光源,其中一個黃色的小球代表光源。
![]() |
| 圖14-2 光源移動 |
14.5、輻射光
在前面的章節中已經應用了輻射光,可以參見10.4.4材質改變的例程(chgmat1.c)的運行效果。這里再一次強調提出,通過給GL_EMISSION定義一個RGBA值,可以使物體看起來象發出這種 顏色的光一樣,以達到某種特殊效果。實際上,現實生活中的物體除光源外都不發光,但我們可以利用這一特性來模擬燈和其他光源。代碼舉例如下:
GLfloat mat_emission[]={0.3,0.3,0.5,0.0}; glMaterialfv(GL_FRONT,GL_EMISSION,mat_emission);
這樣,物體看起來稍微有點發光。比如繪制一個打開的臺燈,就可以將一個小球的材質定義成上述形式,并且在小球內部建立一個聚光源,這樣臺燈的燈泡效果就出來了。



