• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            eryar

            PipeCAD - Plant Piping Design Software.
            RvmTranslator - Translate AVEVA RVM to OBJ, glTF, etc.
            posts - 603, comments - 590, trackbacks - 0, articles - 0

            Plot B-Spline Curve by MATLAB

            Posted on 2011-12-30 18:02 eryar 閱讀(5313) 評論(0)  編輯 收藏 引用 所屬分類: 2.OpenCASCADE
            1. Plot B-Spline Basis Function

            When draw Bezier curve, you only need to know Bernstein basis function, life was easier.Bernstein basis function solely as a function of the number of control points. Now you have a lot more flexibility, but you also have a lot more to worry about. In addition to control points, the B-Spline basis function must account for the degree of the cruve, as well as the ranges defined by the knot vector. The resulting basis functions are defined not by Bernstein polynomials, but by the Cox-de Boor recursion formulas. [Ref. : Focus on Cruves and Surfaces]

            當畫Bezier曲線時,事情要簡單些,因Bezier曲線由Bernstein基函數確定,而Bernstein基函數只與控制頂點數有關。當畫B-Spline曲線時,有了更多的靈活性,即有了局部修改能力,但是你需要考慮的事就更多了。除了控制頂點外,B-Spline曲線的基函數必須解釋曲線的次數和節點矢量定義的范圍。即B-Spline曲線的基函數由Cox-de Boor遞歸方法定義:

            B-Spline Basis Function

            Imagine I want to draw a fourh-order(k=4) cubic curve with 4 control points and I choose a knot vector of [x]=[0,0,0,0,1,1,1,1]. The knot vector forces each control point to affect the entire curve.

            假如我想畫一個四個控制頂點形成的四階三次曲線,選擇節點矢量為[x]=[0,0,0,0,1,1,1,1]。節點矢量迫使每個控制頂點的改變影響到整個曲線。

            使用B樣條基函數的遞歸公式畫出各階基函數的圖形。MATLAB代碼如下:

               1:  %-------------------------------------------------------------------------
               2:  % Imagine I want to draw a fourth-order cubic curve with 4 control points
               3:  % and I choose a knot vector of [x]=[0,0,0,0,1,1,1,1].
               4:  %-------------------------------------------------------------------------
               5:   
               6:  t=0:0.01:1;    % knot vector range
               7:   
               8:  %-------------------------------------------------------------------------
               9:  % 1. First-order basis functions for k=4 [x]=[0,0,0,0,1,1,1,1]
              10:  % N11=0;
              11:  % N21=0;
              12:  % N31=0;
              13:  % N41=1;
              14:  %-------------------------------------------------------------------------
              15:   
              16:  N11=0;
              17:  N21=0;
              18:  N31=0;
              19:  N41=1;
              20:   
              21:  subplot(2,2,1);
              22:  plot(t,N11,t,N21,t,N31,t,N41);
              23:   
              24:  %-------------------------------------------------------------------------
              25:  % 2. Second-order basis functions for k=4 [x]=[0,0,0,0,1,1,1,1]
              26:  % N12=0;
              27:  % N22=0;
              28:  % N32=1-t;
              29:  % N42=t;
              30:  %-------------------------------------------------------------------------
              31:   
              32:  N12=0;  
              33:  N22=0;  
              34:  N32=1-t;
              35:  N42=t; 
              36:   
              37:  subplot(2,2,2);
              38:  plot(t,N12,t,N22,t,N32,t,N42)
              39:   
              40:  %-------------------------------------------------------------------------
              41:  % 3. Third-order basis functions for k=4 [x]=[0,0,0,0,1,1,1,1]
              42:  % N13=0;
              43:  % N23=(1-t)^2;
              44:  % N33=2t(1-t);
              45:  % N43=t^2;
              46:  %-------------------------------------------------------------------------
              47:   
              48:  N13=0;
              49:  N23=(1-t).^2;
              50:  N33=2*t.*(1-t);
              51:  N43=t.^2;
              52:   
              53:  subplot(2,2,3);
              54:  plot(t,N13,t,N23,t,N33,t,N43);
              55:   
              56:  %-------------------------------------------------------------------------
              57:  % 4. Fourth-order basis functions for k=4 [x]=[0,0,0,0,1,1,1,1]
              58:  % N14=(1-t)^3;
              59:  % N24=3t(1-t)^2;
              60:  % N34=3(1-t)t^2;
              61:  % N44=t^3;
              62:  %-------------------------------------------------------------------------
              63:   
              64:  N14=(1-t).^3;
              65:  N24=3*t.*(1-t).^2;
              66:  N34=3*(1-t).*t.^2;
              67:  N44=t.^3;
              68:   
              69:  subplot(2,2,4);
              70:  plot(t,N14,t,N24,t,N34,t,N44);
            .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }

            用MATLAB畫出各階基函數如下圖所示:

            B-Spline basis functions graphics by MATLAB

            三次均勻B樣條基函數Ni,3(u)的圖形由MATLAB生成如下所示:

            Cubic B-Spline Basis Function by MATLAB

            生成此圖形的MATLAB代碼如下:

               1:  %------------------------------------------------------------------------------
               2:  % 均勻B樣條基最簡單的形式是取節點為整數:Ti=i(i=0,1,2,...,n), 
               3:  % 令:t-ti=u,則參數u的取值范圍為[0,1]。則得Ni,3(u)如下式:
               4:  %            | u^3 / 6;                      u=[0,1]
               5:  %            | (-3u^3 + 3u^2 + 3u + 1) / 6;  u=[0,1]
               6:  % Ni,3(u)  = | (3u^3 - 6u^2 + 4) / 6;        u=[0,1]
               7:  %            | (-u^3 + 3u^2 - 3u + 1) / 6;   u=[0,1]
               8:  %            
               9:  %------------------------------------------------------------------------------
              10:   
              11:  u=0:0.01:1;
              12:  N03=u.^3/6;
              13:  N13=(-3*u.^3 + 3*u.^2 + 3*u + 1)/6;
              14:  N23=(3*u.^3 - 6*u.^2 + 4) / 6;
              15:  N33=(-u.^3 + 3*u.^2 - 3*u + 1) / 6;
              16:   
              17:  line(u, N03, 'Color', 'r');
              18:  line(u+1, N13, 'Color', 'g');
              19:  line(u+2, N23, 'Color', 'b');
              20:  line(u+3, N33, 'Color', 'y');
            .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }

             

            2. Plot B-Spline Curve

            已知平面上五個頂點矢量V0(0,1), V1(1,1), V2(1,0), V3(1,-1), V4(2,-1), 要求構造一條三次均勻B樣條曲線,并做出圖形.

            使用MATLAB代碼如下:

               1:  %-----------------------------------------------------------
               2:  % Plot Cubic Uniform B-Spline Curve.
               3:  % Just for Testing, Welcome your advice: eryar@163.com
               4:  %
               5:  % Date : 2011-12-28 21:31
               6:  % 
               7:  %-----------------------------------------------------------
               8:   
               9:  % Knot Vector range.
              10:  u=0:0.01:1;
              11:   
              12:  % Control Points.
              13:  % You can change the control point's number and value
              14:  % to test the effect.
              15:  V0=[0 1];
              16:  V1=[1 1];
              17:  V2=[1 0];
              18:  V3=[1 -1];
              19:  V4=[2 -1];
              20:   
              21:  % Basis Functions.
              22:  N03=(-u.^3 + 3*u.^2 - 3*u + 1) / 6;
              23:  N13=(3*u.^3 - 6*u.^2 + 4) / 6;
              24:  N23=(-3*u.^3 + 3*u.^2 + 3*u + 1)/6;
              25:  N33=u.^3/6;
              26:   
              27:  % Calculate every segment.
              28:  r0x=N03 * V0(1) + N13 * V1(1) + N23 * V2(1) + N33 * V3(1);
              29:  r0y=N03 * V0(2) + N13 * V1(2) + N23 * V2(2) + N33 * V3(2);
              30:  r1x=N03 * V1(1) + N13 * V2(1) + N23 * V3(1) + N33 * V4(1);
              31:  r1y=N03 * V1(2) + N13 * V2(2) + N23 * V3(2) + N33 * V4(2);
              32:   
              33:  % Plot the Control Polygon.
              34:  plot(V0(1), V0(2), 'Marker', 'o'); hold on;
              35:  plot(V0(1), V0(2), 'Marker', 'o'); hold on;
              36:  plot(V1(1), V1(2), 'Marker', 'o'); hold on;
              37:  plot(V2(1), V2(2), 'Marker', 'o'); hold on;
              38:  plot(V3(1), V3(2), 'Marker', 'o'); hold on;
              39:   
              40:  % Plot the Uniform B-Spline Curve.
              41:  line('XData', r0x, 'YData', r0y, 'Color', 'r');
              42:  line('XData', r1x, 'YData', r1y, 'Color', 'g');

            .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 生成圖形如下所示:

            Cubic Uniform B-Spline by MATLAB

            如圖所示,B樣條曲線由兩段組成,控制頂點由“0”標出。

            試求由特征頂點V0=[-1,1], V1=[1,1], V2=[1,-1], V3=[-1,-1]決定的閉合的三次均勻B樣條曲線,并做出圖形。適當修改上述MATLAB代碼,即可得到所求B樣條曲線,如下圖所示:

            Closed Control Points B-Spline Curve

             

            3.結論:

            對于均勻B樣條基函數,由于節點矢量均勻遞增,所以在每兩個節點組成的區間的距離相等。利用基函數的的遞推公式可以計算出每個區間上的函數表達式。對于上例中的均勻B樣條基每個區間取值范圍都是從0到1,通過偏移X軸,可畫出B樣條的基函數。

            通過MATLAB畫出B樣條曲線的基函數,操作簡單,便于對B樣條基函數的理解。在理解B樣條基函數后,會對B樣條曲線的理解更加深刻。繼續加油??!

            性做久久久久久久久浪潮| 国产午夜精品理论片久久| 久久精品视频免费| av无码久久久久不卡免费网站| 94久久国产乱子伦精品免费 | 久久亚洲中文字幕精品一区| 亚洲欧美国产精品专区久久| 7国产欧美日韩综合天堂中文久久久久| 人妻无码αv中文字幕久久 | 久久青青草视频| 精品人妻伦一二三区久久| 91精品国产91久久| 日韩va亚洲va欧美va久久| 久久久精品波多野结衣| 久久久这里只有精品加勒比| 婷婷久久五月天| 午夜精品久久久久久久久| 狠狠色婷婷综合天天久久丁香| 久久国产精品久久久| 久久免费美女视频| 色综合合久久天天给综看| 久久久久久免费视频| 久久精品人人槡人妻人人玩AV| 久久99久久99小草精品免视看| 青青草原1769久久免费播放| 久久成人18免费网站| 久久精品亚洲AV久久久无码| 亚洲av成人无码久久精品| 青青草国产成人久久91网| 亚洲色欲久久久久综合网| 久久久噜噜噜www成人网| 久久精品国产一区二区三区日韩| 九九精品久久久久久噜噜| 久久久久久亚洲精品成人| 久久精品国产99国产精偷| 麻豆久久久9性大片| 99久久99久久精品国产片果冻| 久久人人爽人人爽人人片AV东京热 | 久久国产欧美日韩精品| 久久久久久久99精品免费观看| 国产精品久久久香蕉|