青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Welcome to 陳俊峰's ---BeetleHeaded Man Blog !

  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
  58 隨筆 :: 32 文章 :: 18 評論 :: 0 Trackbacks
Subsections


11. Brief Tour of the Standard Library - Part II

This second tour covers more advanced modules that support professional programming needs. These modules rarely occur in small scripts.


11.1 Output Formatting

The repr module provides an version of repr() for abbreviated displays of large or deeply nested containers:

																		    >>> import repr   
    >>> repr.repr(set('supercalifragilisticexpialidocious'))
    "set(['a', 'c', 'd', 'e', 'f', 'g', ...])"

				
				
				

The pprint module offers more sophisticated control over printing both built-in and user defined objects in a way that is readable by the interpreter. When the result is longer than one line, the ``pretty printer'' adds line breaks and indentation to more clearly reveal data structure:

																		    >>> import pprint
    >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
    ...     'yellow'], 'blue']]]
    ...
    >>> pprint.pprint(t, width=30)
    [[[['black', 'cyan'],
       'white',
       ['green', 'red']],
      [['magenta', 'yellow'],
       'blue']]]

				
				
				

The textwrap module formats paragraphs of text to fit a given screen width:

																		    >>> import textwrap
    >>> doc = """The wrap() method is just like fill() except that it returns
    ... a list of strings instead of one big string with newlines to separate
    ... the wrapped lines."""
    ...
    >>> print textwrap.fill(doc, width=40)
    The wrap() method is just like fill()
    except that it returns a list of strings
    instead of one big string with newlines
    to separate the wrapped lines.

				
				
				

The locale module accesses a database of culture specific data formats. The grouping attribute of locale's format function provides a direct way of formatting numbers with group separators:

																		    >>> import locale
    >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
    'English_United States.1252'
    >>> conv = locale.localeconv()          # get a mapping of conventions
    >>> x = 1234567.8
    >>> locale.format("%d", x, grouping=True)
    '1,234,567'
    >>> locale.format("%s%.*f", (conv['currency_symbol'],
    ...	      conv['frac_digits'], x), grouping=True)
    '$1,234,567.80'

				
				
				


11.2 Templating

The string module includes a versatile Template class with a simplified syntax suitable for editing by end-users. This allows users to customize their applications without having to alter the application.

The format uses placeholder names formed by "$" with valid Python identifiers (alphanumeric characters and underscores). Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with no intervening spaces. Writing "$$" creates a single escaped "$":

																		>>> from string import Template
>>> t = Template('${village}folk send $$10 to $cause.')
>>> t.substitute(village='Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'

				
				
				

The substitute method raises a KeyError when a placeholder is not supplied in a dictionary or a keyword argument. For mail-merge style applications, user supplied data may be incomplete and the safe_substitute method may be more appropriate -- it will leave placeholders unchanged if data is missing:

																		>>> t = Template('Return the $item to $owner.')
>>> d = dict(item='unladen swallow')
>>> t.substitute(d)
Traceback (most recent call last):
  . . .
KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'

				
				
				

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser may elect to use percent signs for placeholders such as the current date, image sequence number, or file format:

																		>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):
...     delimiter = '%'
>>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format):  ')
Enter rename style (%d-date %n-seqnum %f-format):  Ashley_%n%f

>>> t = BatchRename(fmt)
>>> date = time.strftime('%d%b%y')
>>> for i, filename in enumerate(photofiles):
...     base, ext = os.path.splitext(filename)
...     newname = t.substitute(d=date, n=i, f=ext)
...     print '%s --> %s' % (filename, newname)

img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

				
				
				

Another application for templating is separating program logic from the details of multiple output formats. This makes it possible to substitute custom templates for XML files, plain text reports, and HTML web reports.


11.3 Working with Binary Data Record Layouts

The struct module provides pack() and unpack() functions for working with variable length binary record formats. The following example shows how to loop through header information in a ZIP file (with pack codes "H" and "L" representing two and four byte unsigned numbers respectively):

																		    import struct

    data = open('myfile.zip', 'rb').read()
    start = 0
    for i in range(3):                      # show the first 3 file headers
        start += 14
        fields = struct.unpack('LLLHH', data[start:start+16])
        crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

        start += 16
        filename = data[start:start+filenamesize]
        start += filenamesize
        extra = data[start:start+extra_size]
        print filename, hex(crc32), comp_size, uncomp_size

        start += extra_size + comp_size     # skip to the next header

				
				
				


11.4 Multi-threading

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to improve the responsiveness of applications that accept user input while other tasks run in the background. A related use case is running I/O in parallel with computations in another thread.

The following code shows how the high level threading module can run tasks in background while the main program continues to run:

																		    import threading, zipfile

    class AsyncZip(threading.Thread):
        def __init__(self, infile, outfile):
            threading.Thread.__init__(self)        
            self.infile = infile
            self.outfile = outfile
        def run(self):
            f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
            f.write(self.infile)
            f.close()
            print 'Finished background zip of: ', self.infile

    background = AsyncZip('mydata.txt', 'myarchive.zip')
    background.start()
    print 'The main program continues to run in foreground.'
    
    background.join()    # Wait for the background task to finish
    print 'Main program waited until background was done.'

				
				
				

The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To that end, the threading module provides a number of synchronization primitives including locks, events, condition variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the preferred approach to task coordination is to concentrate all access to a resource in a single thread and then use the Queue module to feed that thread with requests from other threads. Applications using Queue objects for inter-thread communication and coordination are easier to design, more readable, and more reliable.


11.5 Logging

The logging module offers a full featured and flexible logging system. At its simplest, log messages are sent to a file or to sys.stderr:

																		    import logging
    logging.debug('Debugging information')
    logging.info('Informational message')
    logging.warning('Warning:config file %s not found', 'server.conf')
    logging.error('Error occurred')
    logging.critical('Critical error -- shutting down')

				
				
				

This produces the following output:

																		    WARNING:root:Warning:config file server.conf not found
    ERROR:root:Error occurred
    CRITICAL:root:Critical error -- shutting down

				
				
				

By default, informational and debugging messages are suppressed and the output is sent to standard error. Other output options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can select different routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.

The logging system can be configured directly from Python or can be loaded from a user editable configuration file for customized logging without altering the application.


11.6 Weak References

Python does automatic memory management (reference counting for most objects and garbage collection to eliminate cycles). The memory is freed shortly after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need to track objects only as long as they are being used by something else. Unfortunately, just tracking them creates a reference that makes them permanent. The weakref module provides tools for tracking objects without creating a reference. When the object is no longer needed, it is automatically removed from a weakref table and a callback is triggered for weakref objects. Typical applications include caching objects that are expensive to create:

																		    >>> import weakref, gc
    >>> class A:
    ...     def __init__(self, value):
    ...             self.value = value
    ...     def __repr__(self):
    ...             return str(self.value)
    ...
    >>> a = A(10)                   # create a reference
    >>> d = weakref.WeakValueDictionary()
    >>> d['primary'] = a            # does not create a reference
    >>> d['primary']                # fetch the object if it is still alive
    10
    >>> del a                       # remove the one reference
    >>> gc.collect()                # run garbage collection right away
    0
    >>> d['primary']                # entry was automatically removed
    Traceback (most recent call last):
      File "<pyshell#108>", line 1, in -toplevel-
        d['primary']                # entry was automatically removed
      File "C:/PY24/lib/weakref.py", line 46, in __getitem__
        o = self.data[key]()
    KeyError: 'primary'

				
				
				


11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative implementations with different performance trade-offs.

The array module provides an array() object that is like a list that stores only homogenous data but stores it more compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers (typecode "H") rather than the usual 16 bytes per entry for regular lists of python int objects:

																		    >>> from array import array
    >>> a = array('H', [4000, 10, 700, 22222])
    >>> sum(a)
    26932
    >>> a[1:3]
    array('H', [10, 700])

				
				
				

The collections module provides a deque() object that is like a list with faster appends and pops from the left side but slower lookups in the middle. These objects are well suited for implementing queues and breadth first tree searches:

																		    >>> from collections import deque
    >>> d = deque(["task1", "task2", "task3"])
    >>> d.append("task4")
    >>> print "Handling", d.popleft()
    Handling task1

    unsearched = deque([starting_node])
    def breadth_first_search(unsearched):
        node = unsearched.popleft()
        for m in gen_moves(node):
            if is_goal(m):
                return m
            unsearched.append(m)

				
				
				

In addition to alternative list implementations, the library also offers other tools such as the bisect module with functions for manipulating sorted lists:

																		    >>> import bisect
    >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
    >>> bisect.insort(scores, (300, 'ruby'))
    >>> scores
    [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

				
				
				

The heapq module provides functions for implementing heaps based on regular lists. The lowest valued entry is always kept at position zero. This is useful for applications which repeatedly access the smallest element but do not want to run a full list sort:

																		    >>> from heapq import heapify, heappop, heappush
    >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
    >>> heapify(data)                      # rearrange the list into heap order
    >>> heappush(data, -5)                 # add a new entry
    >>> [heappop(data) for i in range(3)]  # fetch the three smallest entries
    [-5, 0, 1]

				
				
				


11.8 Decimal Floating Point Arithmetic

The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared to the built-in float implementation of binary floating point, the new class is especially helpful for financial applications and other uses which require exact decimal representation, control over precision, control over rounding to meet legal or regulatory requirements, tracking of significant decimal places, or for applications where the user expects the results to match calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and binary floating point. The difference becomes significant if the results are rounded to the nearest cent:

																		>>> from decimal import *       
>>> Decimal('0.70') * Decimal('1.05')
Decimal("0.7350")
>>> .70 * 1.05
0.73499999999999999

				
				
				

The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with two place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when binary floating point cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo calculations and equality tests that are unsuitable for binary floating point:

																		>>> Decimal('1.00') % Decimal('.10')
Decimal("0.00")
>>> 1.00 % 0.10
0.09999999999999995
       
>>> sum([Decimal('0.1')]*10) == Decimal('1.0')
True
>>> sum([0.1]*10) == 1.0
False

				
				
				

The decimal module provides arithmetic with as much precision as needed:

																		>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal("0.142857142857142857142857142857142857")

				
				
				
posted on 2006-04-13 19:45 Jeff-Chen 閱讀(410) 評論(0)  編輯 收藏 引用 所屬分類: Python
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美伊人久久大香线蕉综合69| 午夜精品区一区二区三| 欧美日韩一卡| 麻豆精品一区二区av白丝在线| 欧美在线综合| 老牛嫩草一区二区三区日本| 欧美不卡视频一区发布| 欧美日韩爆操| 国产欧美日韩亚州综合| 一区二区在线视频播放| 91久久国产精品91久久性色| 99视频一区| 欧美在线高清视频| 久久久伊人欧美| 免费亚洲电影| 99精品视频免费全部在线| 亚洲一区制服诱惑| 久久精品一区二区三区中文字幕| 另类综合日韩欧美亚洲| 欧美日韩免费在线| 狠狠色丁香婷综合久久| 日韩亚洲综合在线| 久久久久久综合网天天| 亚洲区国产区| 一区二区欧美日韩| 久久国产黑丝| 国产精品大全| 亚洲日本欧美| 久久久人人人| 亚洲网站在线播放| 欧美黑人在线播放| 国产日韩精品在线| 一区二区激情小说| 免费观看30秒视频久久| 亚洲一区免费看| 欧美日韩伦理在线| 亚洲国产成人在线视频| 久久av一区二区三区| 99国产精品国产精品毛片| 久久精品夜色噜噜亚洲a∨| 国产精品久久久久秋霞鲁丝| 亚洲国产成人91精品| 久久精品国产999大香线蕉| 亚洲神马久久| 国产精品高清在线| 一本色道久久综合亚洲精品婷婷| 免费一区视频| 久久爱91午夜羞羞| 国产精品亚洲视频| 亚洲免费视频网站| 亚洲免费观看高清完整版在线观看| 久久深夜福利免费观看| 黑人巨大精品欧美一区二区小视频 | 亚洲日本久久| 欧美.com| 久久一区免费| 一区二区在线观看视频在线观看 | 欧美一级片一区| 一本色道久久加勒比88综合| 欧美连裤袜在线视频| 99国产精品私拍| 亚洲精品综合精品自拍| 欧美片在线观看| 亚洲深夜福利网站| 艳妇臀荡乳欲伦亚洲一区| 欧美午夜三级| 国产亚洲成av人在线观看导航 | 久久精品国产91精品亚洲| 国产日韩精品在线播放| 久久婷婷国产麻豆91天堂| 久久精品在线免费观看| 精品动漫一区二区| 欧美搞黄网站| 欧美日韩成人网| 亚洲欧美日韩国产一区二区| 亚洲一区二区三区国产| 国产日韩精品在线| 蜜臀久久久99精品久久久久久 | 欧美人与禽性xxxxx杂性| 亚洲夜间福利| 小嫩嫩精品导航| 亚洲国产专区| 日韩亚洲视频在线| 国产精品亚洲第一区在线暖暖韩国| 久久激情视频免费观看| 蜜臀久久99精品久久久画质超高清| 日韩视频在线一区| 亚洲欧洲av一区二区| 亚洲国产精品成人精品| 一本色道久久综合狠狠躁篇怎么玩| 国产视频久久久久| 亚洲国产影院| 国产在线欧美| 一本色道久久综合| 亚洲激情网站| 午夜国产精品影院在线观看| 在线观看成人av电影| 99re6这里只有精品| 国内精品亚洲| 一级日韩一区在线观看| 亚洲第一在线视频| 午夜在线一区| 亚洲一二三区精品| 久久久视频精品| 性欧美在线看片a免费观看| 免费在线成人| 久久综合久久综合九色| 国产精品久久久久久久久婷婷| 欧美不卡视频| 国产一区久久| 亚洲一区欧美一区| 一区二区久久| 欧美成人午夜视频| 久久综合九色| 韩国av一区二区三区四区| 99re这里只有精品6| 亚洲二区在线| 久久精品99久久香蕉国产色戒| 亚洲欧美日韩人成在线播放| 欧美黄色aa电影| 亚洲国产天堂久久综合网| 好吊视频一区二区三区四区 | 久久国产精品72免费观看| 亚洲主播在线播放| 欧美午夜精品久久久久久人妖 | 日韩一区二区电影网| 欧美bbbxxxxx| 麻豆av福利av久久av| 国产麻豆精品theporn| 亚洲美洲欧洲综合国产一区| 亚洲国内高清视频| 久久久久久久综合狠狠综合| 久久精品二区亚洲w码| 国产精品入口福利| 亚洲四色影视在线观看| 国产精品99久久久久久久女警| 欧美高清hd18日本| 亚洲激情欧美激情| 亚洲少妇自拍| 国产精品久久久久aaaa九色| 99日韩精品| 亚洲影院免费| 国产亚洲精品久| 久久米奇亚洲| 亚洲高清电影| 亚洲视频免费看| 国产精品欧美激情| 香港久久久电影| 免费成人你懂的| 日韩视频在线一区二区三区| 欧美三区视频| 久久国产精品99国产精| 欧美高清成人| 亚洲图片欧洲图片av| 国产欧美一区二区白浆黑人| 欧美亚洲视频| 亚洲国产精品精华液2区45| 亚洲天堂av电影| 国产亚洲精品久久久久久| 免费在线欧美黄色| 一区二区三区视频在线观看| 久久精品国产亚洲一区二区| 亚洲国产高清自拍| 国产精品高精视频免费| 久久久久久69| 一区二区三区久久久| 免费成人在线视频网站| 亚洲一区二区在线| 亚洲福利视频二区| 欧美性开放视频| 久久乐国产精品| 一本一本久久a久久精品综合妖精| 久久精品国产一区二区三区| 亚洲日本在线观看| 国产一区二区三区在线观看免费视频 | 一区二区免费在线视频| 裸体歌舞表演一区二区| 亚洲在线播放电影| 亚洲国产成人在线播放| 国产日本欧美一区二区三区在线| 欧美v日韩v国产v| 先锋影音网一区二区| 日韩午夜av在线| 欧美成人精品激情在线观看| 国产精品99久久久久久宅男| 亚洲电影天堂av| 国产在线播放一区二区三区| 欧美日本国产| 欧美/亚洲一区| 久久激情五月丁香伊人| 亚洲一二三区视频在线观看| 亚洲黄色在线观看| 美女精品视频一区| 欧美亚洲一区二区三区| 久久视频在线视频| 午夜精品久久久久久久久久久久久 | 亚洲综合另类| 一区二区三区免费观看| 亚洲三级性片| 亚洲高清在线观看|