青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Welcome to 陳俊峰's ---BeetleHeaded Man Blog !

  C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
  58 隨筆 :: 32 文章 :: 18 評論 :: 0 Trackbacks
Subsections


11. Brief Tour of the Standard Library - Part II

This second tour covers more advanced modules that support professional programming needs. These modules rarely occur in small scripts.


11.1 Output Formatting

The repr module provides an version of repr() for abbreviated displays of large or deeply nested containers:

																		    >>> import repr   
    >>> repr.repr(set('supercalifragilisticexpialidocious'))
    "set(['a', 'c', 'd', 'e', 'f', 'g', ...])"

				
				
				

The pprint module offers more sophisticated control over printing both built-in and user defined objects in a way that is readable by the interpreter. When the result is longer than one line, the ``pretty printer'' adds line breaks and indentation to more clearly reveal data structure:

																		    >>> import pprint
    >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
    ...     'yellow'], 'blue']]]
    ...
    >>> pprint.pprint(t, width=30)
    [[[['black', 'cyan'],
       'white',
       ['green', 'red']],
      [['magenta', 'yellow'],
       'blue']]]

				
				
				

The textwrap module formats paragraphs of text to fit a given screen width:

																		    >>> import textwrap
    >>> doc = """The wrap() method is just like fill() except that it returns
    ... a list of strings instead of one big string with newlines to separate
    ... the wrapped lines."""
    ...
    >>> print textwrap.fill(doc, width=40)
    The wrap() method is just like fill()
    except that it returns a list of strings
    instead of one big string with newlines
    to separate the wrapped lines.

				
				
				

The locale module accesses a database of culture specific data formats. The grouping attribute of locale's format function provides a direct way of formatting numbers with group separators:

																		    >>> import locale
    >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
    'English_United States.1252'
    >>> conv = locale.localeconv()          # get a mapping of conventions
    >>> x = 1234567.8
    >>> locale.format("%d", x, grouping=True)
    '1,234,567'
    >>> locale.format("%s%.*f", (conv['currency_symbol'],
    ...	      conv['frac_digits'], x), grouping=True)
    '$1,234,567.80'

				
				
				


11.2 Templating

The string module includes a versatile Template class with a simplified syntax suitable for editing by end-users. This allows users to customize their applications without having to alter the application.

The format uses placeholder names formed by "$" with valid Python identifiers (alphanumeric characters and underscores). Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with no intervening spaces. Writing "$$" creates a single escaped "$":

																		>>> from string import Template
>>> t = Template('${village}folk send $$10 to $cause.')
>>> t.substitute(village='Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'

				
				
				

The substitute method raises a KeyError when a placeholder is not supplied in a dictionary or a keyword argument. For mail-merge style applications, user supplied data may be incomplete and the safe_substitute method may be more appropriate -- it will leave placeholders unchanged if data is missing:

																		>>> t = Template('Return the $item to $owner.')
>>> d = dict(item='unladen swallow')
>>> t.substitute(d)
Traceback (most recent call last):
  . . .
KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'

				
				
				

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser may elect to use percent signs for placeholders such as the current date, image sequence number, or file format:

																		>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):
...     delimiter = '%'
>>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format):  ')
Enter rename style (%d-date %n-seqnum %f-format):  Ashley_%n%f

>>> t = BatchRename(fmt)
>>> date = time.strftime('%d%b%y')
>>> for i, filename in enumerate(photofiles):
...     base, ext = os.path.splitext(filename)
...     newname = t.substitute(d=date, n=i, f=ext)
...     print '%s --> %s' % (filename, newname)

img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

				
				
				

Another application for templating is separating program logic from the details of multiple output formats. This makes it possible to substitute custom templates for XML files, plain text reports, and HTML web reports.


11.3 Working with Binary Data Record Layouts

The struct module provides pack() and unpack() functions for working with variable length binary record formats. The following example shows how to loop through header information in a ZIP file (with pack codes "H" and "L" representing two and four byte unsigned numbers respectively):

																		    import struct

    data = open('myfile.zip', 'rb').read()
    start = 0
    for i in range(3):                      # show the first 3 file headers
        start += 14
        fields = struct.unpack('LLLHH', data[start:start+16])
        crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

        start += 16
        filename = data[start:start+filenamesize]
        start += filenamesize
        extra = data[start:start+extra_size]
        print filename, hex(crc32), comp_size, uncomp_size

        start += extra_size + comp_size     # skip to the next header

				
				
				


11.4 Multi-threading

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to improve the responsiveness of applications that accept user input while other tasks run in the background. A related use case is running I/O in parallel with computations in another thread.

The following code shows how the high level threading module can run tasks in background while the main program continues to run:

																		    import threading, zipfile

    class AsyncZip(threading.Thread):
        def __init__(self, infile, outfile):
            threading.Thread.__init__(self)        
            self.infile = infile
            self.outfile = outfile
        def run(self):
            f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
            f.write(self.infile)
            f.close()
            print 'Finished background zip of: ', self.infile

    background = AsyncZip('mydata.txt', 'myarchive.zip')
    background.start()
    print 'The main program continues to run in foreground.'
    
    background.join()    # Wait for the background task to finish
    print 'Main program waited until background was done.'

				
				
				

The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To that end, the threading module provides a number of synchronization primitives including locks, events, condition variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the preferred approach to task coordination is to concentrate all access to a resource in a single thread and then use the Queue module to feed that thread with requests from other threads. Applications using Queue objects for inter-thread communication and coordination are easier to design, more readable, and more reliable.


11.5 Logging

The logging module offers a full featured and flexible logging system. At its simplest, log messages are sent to a file or to sys.stderr:

																		    import logging
    logging.debug('Debugging information')
    logging.info('Informational message')
    logging.warning('Warning:config file %s not found', 'server.conf')
    logging.error('Error occurred')
    logging.critical('Critical error -- shutting down')

				
				
				

This produces the following output:

																		    WARNING:root:Warning:config file server.conf not found
    ERROR:root:Error occurred
    CRITICAL:root:Critical error -- shutting down

				
				
				

By default, informational and debugging messages are suppressed and the output is sent to standard error. Other output options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can select different routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.

The logging system can be configured directly from Python or can be loaded from a user editable configuration file for customized logging without altering the application.


11.6 Weak References

Python does automatic memory management (reference counting for most objects and garbage collection to eliminate cycles). The memory is freed shortly after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need to track objects only as long as they are being used by something else. Unfortunately, just tracking them creates a reference that makes them permanent. The weakref module provides tools for tracking objects without creating a reference. When the object is no longer needed, it is automatically removed from a weakref table and a callback is triggered for weakref objects. Typical applications include caching objects that are expensive to create:

																		    >>> import weakref, gc
    >>> class A:
    ...     def __init__(self, value):
    ...             self.value = value
    ...     def __repr__(self):
    ...             return str(self.value)
    ...
    >>> a = A(10)                   # create a reference
    >>> d = weakref.WeakValueDictionary()
    >>> d['primary'] = a            # does not create a reference
    >>> d['primary']                # fetch the object if it is still alive
    10
    >>> del a                       # remove the one reference
    >>> gc.collect()                # run garbage collection right away
    0
    >>> d['primary']                # entry was automatically removed
    Traceback (most recent call last):
      File "<pyshell#108>", line 1, in -toplevel-
        d['primary']                # entry was automatically removed
      File "C:/PY24/lib/weakref.py", line 46, in __getitem__
        o = self.data[key]()
    KeyError: 'primary'

				
				
				


11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative implementations with different performance trade-offs.

The array module provides an array() object that is like a list that stores only homogenous data but stores it more compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers (typecode "H") rather than the usual 16 bytes per entry for regular lists of python int objects:

																		    >>> from array import array
    >>> a = array('H', [4000, 10, 700, 22222])
    >>> sum(a)
    26932
    >>> a[1:3]
    array('H', [10, 700])

				
				
				

The collections module provides a deque() object that is like a list with faster appends and pops from the left side but slower lookups in the middle. These objects are well suited for implementing queues and breadth first tree searches:

																		    >>> from collections import deque
    >>> d = deque(["task1", "task2", "task3"])
    >>> d.append("task4")
    >>> print "Handling", d.popleft()
    Handling task1

    unsearched = deque([starting_node])
    def breadth_first_search(unsearched):
        node = unsearched.popleft()
        for m in gen_moves(node):
            if is_goal(m):
                return m
            unsearched.append(m)

				
				
				

In addition to alternative list implementations, the library also offers other tools such as the bisect module with functions for manipulating sorted lists:

																		    >>> import bisect
    >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
    >>> bisect.insort(scores, (300, 'ruby'))
    >>> scores
    [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

				
				
				

The heapq module provides functions for implementing heaps based on regular lists. The lowest valued entry is always kept at position zero. This is useful for applications which repeatedly access the smallest element but do not want to run a full list sort:

																		    >>> from heapq import heapify, heappop, heappush
    >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
    >>> heapify(data)                      # rearrange the list into heap order
    >>> heappush(data, -5)                 # add a new entry
    >>> [heappop(data) for i in range(3)]  # fetch the three smallest entries
    [-5, 0, 1]

				
				
				


11.8 Decimal Floating Point Arithmetic

The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared to the built-in float implementation of binary floating point, the new class is especially helpful for financial applications and other uses which require exact decimal representation, control over precision, control over rounding to meet legal or regulatory requirements, tracking of significant decimal places, or for applications where the user expects the results to match calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and binary floating point. The difference becomes significant if the results are rounded to the nearest cent:

																		>>> from decimal import *       
>>> Decimal('0.70') * Decimal('1.05')
Decimal("0.7350")
>>> .70 * 1.05
0.73499999999999999

				
				
				

The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with two place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when binary floating point cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo calculations and equality tests that are unsuitable for binary floating point:

																		>>> Decimal('1.00') % Decimal('.10')
Decimal("0.00")
>>> 1.00 % 0.10
0.09999999999999995
       
>>> sum([Decimal('0.1')]*10) == Decimal('1.0')
True
>>> sum([0.1]*10) == 1.0
False

				
				
				

The decimal module provides arithmetic with as much precision as needed:

																		>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal("0.142857142857142857142857142857142857")

				
				
				
posted on 2006-04-13 19:45 Jeff-Chen 閱讀(410) 評論(0)  編輯 收藏 引用 所屬分類: Python
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲国产精品精华液网站| 最近看过的日韩成人| 亚洲精品一区二区在线观看| 久久久久久色| 欧美一区二区视频97| 欧美成人激情视频免费观看| 美女脱光内衣内裤视频久久网站| 国产欧美一区二区精品婷婷 | 久久久无码精品亚洲日韩按摩| 欧美黄色aa电影| 欧美激情精品久久久久久蜜臀| 久久永久免费| 91久久精品国产91久久性色| 免费观看久久久4p| 亚洲国产精品成人综合| 亚洲精品系列| 欧美中文字幕视频| 免费在线日韩av| 国产精品制服诱惑| 亚洲激情第一区| 欧美一区二区日韩一区二区| 久久久久久久综合色一本| 亚洲国产另类精品专区| 中文国产成人精品久久一| 欧美一区二区在线视频| 欧美国产综合视频| 国产主播一区| 欧美一区二区三区免费视| 亚洲大片免费看| 久久久久久伊人| 国产免费亚洲高清| 亚洲天堂av在线免费| 亚洲电影在线免费观看| 亚洲欧美999| 久久久国产精品一区| 亚洲欧洲av一区二区| 久久综合伊人77777| 国产精品国产a级| 一本久久a久久免费精品不卡| 快射av在线播放一区| 欧美一级免费视频| 国产欧美二区| 久久久久久久久久久久久久一区| 亚洲自拍偷拍麻豆| 国产人久久人人人人爽| 欧美一区二区日韩| 久久成人综合网| 国产午夜精品一区二区三区欧美 | 国产欧美在线观看| 欧美在线|欧美| 久久综合给合| 亚洲一区二区高清| 亚洲影视在线播放| 黑人操亚洲美女惩罚| 欧美www视频| 久久超碰97中文字幕| 国产视频欧美| 久久久精品999| 欧美国产高清| 久久久久久9| 欧美视频中文字幕在线| 久久久久国内| 欧美日韩免费网站| 久久久免费观看视频| 欧美一区二区三区喷汁尤物| 午夜视频在线观看一区| 亚洲理伦在线| 久久久福利视频| 午夜天堂精品久久久久| 欧美日韩免费区域视频在线观看| 久久亚洲综合色| 国产日韩在线播放| 亚洲图片欧洲图片av| 亚洲精品在线电影| 久久先锋资源| 免费永久网站黄欧美| 国产欧美亚洲日本| 午夜精品一区二区三区四区 | 午夜在线精品| 亚洲女优在线| 国产精品推荐精品| 亚洲欧美变态国产另类| 欧美一区亚洲二区| 激情婷婷久久| 欧美国产日韩精品| 亚洲精品国产精品国自产在线 | 亚洲自拍啪啪| 国产精品亚洲综合久久| 亚洲欧美视频在线观看视频| 久久国产精品一区二区| 国产曰批免费观看久久久| 久久久久久穴| 亚洲一级黄色av| 久久综合网络一区二区| 亚洲国产日韩欧美在线图片| 欧美欧美天天天天操| 亚洲午夜在线观看视频在线| 国产精品久久久久999| 午夜精品影院在线观看| 亚洲高清久久久| 亚洲一区免费看| 一区二区三区在线观看国产| 欧美激情偷拍| 久久av二区| 性色av一区二区怡红| 亚洲日本无吗高清不卡| 欧美va亚洲va日韩∨a综合色| 亚洲欧美精品一区| 亚洲精品久久久一区二区三区| 国产精品亚洲综合天堂夜夜| 欧美成人黑人xx视频免费观看| 欧美一区视频| 亚洲欧美怡红院| 亚洲一区二区三区影院| 一区二区高清在线| 亚洲美女黄网| 亚洲免费视频观看| 一片黄亚洲嫩模| 亚洲色图自拍| 午夜在线视频观看日韩17c| 性欧美大战久久久久久久久| 亚洲免费视频成人| 午夜一区不卡| 久久久免费精品| 美女网站久久| 国产精品劲爆视频| 国产目拍亚洲精品99久久精品| 国产精品午夜电影| 国产真实乱子伦精品视频| 亚洲成人在线网站| 亚洲日本va午夜在线电影| 亚洲精品欧美在线| 午夜精品三级视频福利| 久久久久久久综合狠狠综合| 欧美a级一区二区| 一本色道久久99精品综合| 午夜在线视频观看日韩17c| 免费成人黄色av| 91久久综合亚洲鲁鲁五月天| 99国产精品久久久久久久成人热| 亚洲综合国产| 欧美网站大全在线观看| 狠狠综合久久av一区二区老牛| 亚洲精品欧美| 欧美不卡三区| 亚洲一级黄色av| 国产精品麻豆成人av电影艾秋| 国产自产精品| 午夜视频一区二区| 在线亚洲精品| 欧美日韩一区在线观看| 亚洲国产日韩欧美| 欧美a级片网站| 老司机午夜精品视频| 国产日产高清欧美一区二区三区| 日韩午夜黄色| 亚洲区在线播放| 欧美激情视频给我| 99riav1国产精品视频| 亚洲成色www8888| 欧美 亚欧 日韩视频在线| 136国产福利精品导航网址| 久久亚洲色图| 欧美激情亚洲综合一区| 亚洲伦理在线免费看| 最新国产の精品合集bt伙计| 欧美精品福利在线| 亚洲欧美日韩精品久久亚洲区| 亚洲视频综合| 影音先锋另类| 日韩午夜电影av| 国产主播精品在线| 亚洲精品欧洲| 好男人免费精品视频| 亚洲乱码一区二区| 国产一区清纯| 亚洲免费伊人电影在线观看av| 狠狠入ady亚洲精品| 亚洲三级性片| 亚洲夫妻自拍| 欧美一级成年大片在线观看| 亚洲黑丝在线| 久久久久高清| 男男成人高潮片免费网站| 亚洲精品日韩在线观看| 制服丝袜亚洲播放| 国产亚洲一区二区三区| 欧美激情视频给我| 国产精品一区久久久| 日韩午夜免费视频| 日韩一级片网址| 欧美紧缚bdsm在线视频| 欧美高清视频| 午夜在线精品| 欧美一区二区三区免费视频 | 欧美激情影院| 亚洲第一福利社区| 免费毛片一区二区三区久久久| 久久久久国产精品午夜一区| 国产欧美日韩专区发布|