青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Welcome to 陳俊峰's ---BeetleHeaded Man Blog !

  C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
  58 隨筆 :: 32 文章 :: 18 評論 :: 0 Trackbacks
Subsections


11. Brief Tour of the Standard Library - Part II

This second tour covers more advanced modules that support professional programming needs. These modules rarely occur in small scripts.


11.1 Output Formatting

The repr module provides an version of repr() for abbreviated displays of large or deeply nested containers:

																		    >>> import repr   
    >>> repr.repr(set('supercalifragilisticexpialidocious'))
    "set(['a', 'c', 'd', 'e', 'f', 'g', ...])"

				
				
				

The pprint module offers more sophisticated control over printing both built-in and user defined objects in a way that is readable by the interpreter. When the result is longer than one line, the ``pretty printer'' adds line breaks and indentation to more clearly reveal data structure:

																		    >>> import pprint
    >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
    ...     'yellow'], 'blue']]]
    ...
    >>> pprint.pprint(t, width=30)
    [[[['black', 'cyan'],
       'white',
       ['green', 'red']],
      [['magenta', 'yellow'],
       'blue']]]

				
				
				

The textwrap module formats paragraphs of text to fit a given screen width:

																		    >>> import textwrap
    >>> doc = """The wrap() method is just like fill() except that it returns
    ... a list of strings instead of one big string with newlines to separate
    ... the wrapped lines."""
    ...
    >>> print textwrap.fill(doc, width=40)
    The wrap() method is just like fill()
    except that it returns a list of strings
    instead of one big string with newlines
    to separate the wrapped lines.

				
				
				

The locale module accesses a database of culture specific data formats. The grouping attribute of locale's format function provides a direct way of formatting numbers with group separators:

																		    >>> import locale
    >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
    'English_United States.1252'
    >>> conv = locale.localeconv()          # get a mapping of conventions
    >>> x = 1234567.8
    >>> locale.format("%d", x, grouping=True)
    '1,234,567'
    >>> locale.format("%s%.*f", (conv['currency_symbol'],
    ...	      conv['frac_digits'], x), grouping=True)
    '$1,234,567.80'

				
				
				


11.2 Templating

The string module includes a versatile Template class with a simplified syntax suitable for editing by end-users. This allows users to customize their applications without having to alter the application.

The format uses placeholder names formed by "$" with valid Python identifiers (alphanumeric characters and underscores). Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with no intervening spaces. Writing "$$" creates a single escaped "$":

																		>>> from string import Template
>>> t = Template('${village}folk send $$10 to $cause.')
>>> t.substitute(village='Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'

				
				
				

The substitute method raises a KeyError when a placeholder is not supplied in a dictionary or a keyword argument. For mail-merge style applications, user supplied data may be incomplete and the safe_substitute method may be more appropriate -- it will leave placeholders unchanged if data is missing:

																		>>> t = Template('Return the $item to $owner.')
>>> d = dict(item='unladen swallow')
>>> t.substitute(d)
Traceback (most recent call last):
  . . .
KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'

				
				
				

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser may elect to use percent signs for placeholders such as the current date, image sequence number, or file format:

																		>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):
...     delimiter = '%'
>>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format):  ')
Enter rename style (%d-date %n-seqnum %f-format):  Ashley_%n%f

>>> t = BatchRename(fmt)
>>> date = time.strftime('%d%b%y')
>>> for i, filename in enumerate(photofiles):
...     base, ext = os.path.splitext(filename)
...     newname = t.substitute(d=date, n=i, f=ext)
...     print '%s --> %s' % (filename, newname)

img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

				
				
				

Another application for templating is separating program logic from the details of multiple output formats. This makes it possible to substitute custom templates for XML files, plain text reports, and HTML web reports.


11.3 Working with Binary Data Record Layouts

The struct module provides pack() and unpack() functions for working with variable length binary record formats. The following example shows how to loop through header information in a ZIP file (with pack codes "H" and "L" representing two and four byte unsigned numbers respectively):

																		    import struct

    data = open('myfile.zip', 'rb').read()
    start = 0
    for i in range(3):                      # show the first 3 file headers
        start += 14
        fields = struct.unpack('LLLHH', data[start:start+16])
        crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

        start += 16
        filename = data[start:start+filenamesize]
        start += filenamesize
        extra = data[start:start+extra_size]
        print filename, hex(crc32), comp_size, uncomp_size

        start += extra_size + comp_size     # skip to the next header

				
				
				


11.4 Multi-threading

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to improve the responsiveness of applications that accept user input while other tasks run in the background. A related use case is running I/O in parallel with computations in another thread.

The following code shows how the high level threading module can run tasks in background while the main program continues to run:

																		    import threading, zipfile

    class AsyncZip(threading.Thread):
        def __init__(self, infile, outfile):
            threading.Thread.__init__(self)        
            self.infile = infile
            self.outfile = outfile
        def run(self):
            f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
            f.write(self.infile)
            f.close()
            print 'Finished background zip of: ', self.infile

    background = AsyncZip('mydata.txt', 'myarchive.zip')
    background.start()
    print 'The main program continues to run in foreground.'
    
    background.join()    # Wait for the background task to finish
    print 'Main program waited until background was done.'

				
				
				

The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To that end, the threading module provides a number of synchronization primitives including locks, events, condition variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the preferred approach to task coordination is to concentrate all access to a resource in a single thread and then use the Queue module to feed that thread with requests from other threads. Applications using Queue objects for inter-thread communication and coordination are easier to design, more readable, and more reliable.


11.5 Logging

The logging module offers a full featured and flexible logging system. At its simplest, log messages are sent to a file or to sys.stderr:

																		    import logging
    logging.debug('Debugging information')
    logging.info('Informational message')
    logging.warning('Warning:config file %s not found', 'server.conf')
    logging.error('Error occurred')
    logging.critical('Critical error -- shutting down')

				
				
				

This produces the following output:

																		    WARNING:root:Warning:config file server.conf not found
    ERROR:root:Error occurred
    CRITICAL:root:Critical error -- shutting down

				
				
				

By default, informational and debugging messages are suppressed and the output is sent to standard error. Other output options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can select different routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.

The logging system can be configured directly from Python or can be loaded from a user editable configuration file for customized logging without altering the application.


11.6 Weak References

Python does automatic memory management (reference counting for most objects and garbage collection to eliminate cycles). The memory is freed shortly after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need to track objects only as long as they are being used by something else. Unfortunately, just tracking them creates a reference that makes them permanent. The weakref module provides tools for tracking objects without creating a reference. When the object is no longer needed, it is automatically removed from a weakref table and a callback is triggered for weakref objects. Typical applications include caching objects that are expensive to create:

																		    >>> import weakref, gc
    >>> class A:
    ...     def __init__(self, value):
    ...             self.value = value
    ...     def __repr__(self):
    ...             return str(self.value)
    ...
    >>> a = A(10)                   # create a reference
    >>> d = weakref.WeakValueDictionary()
    >>> d['primary'] = a            # does not create a reference
    >>> d['primary']                # fetch the object if it is still alive
    10
    >>> del a                       # remove the one reference
    >>> gc.collect()                # run garbage collection right away
    0
    >>> d['primary']                # entry was automatically removed
    Traceback (most recent call last):
      File "<pyshell#108>", line 1, in -toplevel-
        d['primary']                # entry was automatically removed
      File "C:/PY24/lib/weakref.py", line 46, in __getitem__
        o = self.data[key]()
    KeyError: 'primary'

				
				
				


11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative implementations with different performance trade-offs.

The array module provides an array() object that is like a list that stores only homogenous data but stores it more compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers (typecode "H") rather than the usual 16 bytes per entry for regular lists of python int objects:

																		    >>> from array import array
    >>> a = array('H', [4000, 10, 700, 22222])
    >>> sum(a)
    26932
    >>> a[1:3]
    array('H', [10, 700])

				
				
				

The collections module provides a deque() object that is like a list with faster appends and pops from the left side but slower lookups in the middle. These objects are well suited for implementing queues and breadth first tree searches:

																		    >>> from collections import deque
    >>> d = deque(["task1", "task2", "task3"])
    >>> d.append("task4")
    >>> print "Handling", d.popleft()
    Handling task1

    unsearched = deque([starting_node])
    def breadth_first_search(unsearched):
        node = unsearched.popleft()
        for m in gen_moves(node):
            if is_goal(m):
                return m
            unsearched.append(m)

				
				
				

In addition to alternative list implementations, the library also offers other tools such as the bisect module with functions for manipulating sorted lists:

																		    >>> import bisect
    >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
    >>> bisect.insort(scores, (300, 'ruby'))
    >>> scores
    [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

				
				
				

The heapq module provides functions for implementing heaps based on regular lists. The lowest valued entry is always kept at position zero. This is useful for applications which repeatedly access the smallest element but do not want to run a full list sort:

																		    >>> from heapq import heapify, heappop, heappush
    >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
    >>> heapify(data)                      # rearrange the list into heap order
    >>> heappush(data, -5)                 # add a new entry
    >>> [heappop(data) for i in range(3)]  # fetch the three smallest entries
    [-5, 0, 1]

				
				
				


11.8 Decimal Floating Point Arithmetic

The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared to the built-in float implementation of binary floating point, the new class is especially helpful for financial applications and other uses which require exact decimal representation, control over precision, control over rounding to meet legal or regulatory requirements, tracking of significant decimal places, or for applications where the user expects the results to match calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and binary floating point. The difference becomes significant if the results are rounded to the nearest cent:

																		>>> from decimal import *       
>>> Decimal('0.70') * Decimal('1.05')
Decimal("0.7350")
>>> .70 * 1.05
0.73499999999999999

				
				
				

The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with two place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when binary floating point cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo calculations and equality tests that are unsuitable for binary floating point:

																		>>> Decimal('1.00') % Decimal('.10')
Decimal("0.00")
>>> 1.00 % 0.10
0.09999999999999995
       
>>> sum([Decimal('0.1')]*10) == Decimal('1.0')
True
>>> sum([0.1]*10) == 1.0
False

				
				
				

The decimal module provides arithmetic with as much precision as needed:

																		>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal("0.142857142857142857142857142857142857")

				
				
				
posted on 2006-04-13 19:45 Jeff-Chen 閱讀(410) 評論(0)  編輯 收藏 引用 所屬分類: Python
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            国产在线麻豆精品观看| 夜夜嗨一区二区| 国产乱人伦精品一区二区| 国产精品久久久久秋霞鲁丝| 国产欧亚日韩视频| 有坂深雪在线一区| 亚洲六月丁香色婷婷综合久久| 一本色道久久99精品综合 | 国产精品女主播一区二区三区| 一区二区三区黄色| 久久久精品2019中文字幕神马| 欧美激情免费在线| 亚洲免费一区二区| 久久中文久久字幕| 欧美日韩国产综合在线| 国产精品久久久久毛片软件| 久久gogo国模裸体人体| 日韩网站在线观看| 久久精品国产v日韩v亚洲 | 在线午夜精品| 蜜臀a∨国产成人精品| 国产精品影片在线观看| 老色批av在线精品| 亚洲一区二区三区三| 欧美人成网站| 亚洲精品欧美| 欧美+亚洲+精品+三区| 亚洲欧美日韩在线高清直播| 欧美日韩一区二区三区| 亚洲国产毛片完整版 | 在线成人av| 99成人免费视频| 欧美人与禽猛交乱配| 久久精品av麻豆的观看方式 | 久久久噜久噜久久综合| 亚洲免费视频成人| 亚洲高清在线观看| 麻豆精品在线播放| 国产精品国产精品| 亚洲欧美日韩国产成人精品影院| 亚洲国产成人不卡| 久久久人成影片一区二区三区| 免费不卡视频| 久久久久一区| 国产毛片一区| 99天天综合性| 亚洲精品综合精品自拍| 久久国产精品亚洲77777| 亚洲女人天堂成人av在线| 久久综合一区二区| 久久人人爽人人| 国产欧美日韩在线视频| 一本色道久久综合亚洲精品不卡 | 欧美三级在线| 亚洲一区二区三区在线视频| 亚洲国产婷婷| 欧美二区在线| 国产精品毛片一区二区三区| 亚洲国产精品精华液2区45| 狠狠久久亚洲欧美专区| 欧美国产精品劲爆| 欧美日韩国产一级| 欧美国产综合视频| 激情国产一区| 亚洲人成欧美中文字幕| 欧美午夜精品理论片a级大开眼界 欧美午夜精品理论片a级按摩 | 99这里只有久久精品视频| 亚洲精品中文字幕在线观看| 蜜臀91精品一区二区三区| 欧美激情精品久久久六区热门 | 国产精品福利在线观看| 日韩香蕉视频| 亚洲欧美日韩高清| 国产精品一区二区男女羞羞无遮挡 | 午夜亚洲影视| 久久一区中文字幕| 99在线热播精品免费| 欧美久久久久免费| 日韩亚洲在线| 欧美一区二区三区免费在线看 | 亚洲视频电影在线| 亚洲欧美成人一区二区三区| 国产精品入口尤物| 亚洲国产欧洲综合997久久| 亚洲日本成人| 欧美在线观看一区| 中文在线一区| 欧美激情导航| 正在播放亚洲一区| 久久人人精品| 99国产精品国产精品久久| 久久精品一区二区国产| 亚洲欧美日韩综合| 久久久久久久久久久成人| 亚洲午夜精品一区二区| 国产欧美一区二区三区另类精品| 久久九九国产| 日韩天堂在线视频| 久久久久久久久久久久久久一区 | 经典三级久久| 欧美日韩亚洲国产精品| 欧美一级网站| 欧美在线日韩| 亚洲日韩欧美一区二区在线| 国产精品久久久久久久久动漫| 久久都是精品| av不卡在线| 奶水喷射视频一区| 亚洲专区欧美专区| 国产精品成人国产乱一区| 久久国产手机看片| 99国产精品99久久久久久| 欧美专区第一页| 一本到高清视频免费精品| 国产亚洲欧美一级| 香蕉免费一区二区三区在线观看| 亚洲欧美电影院| 亚洲日本欧美| 激情五月综合色婷婷一区二区| 欧美三级第一页| 女同一区二区| 亚洲精选在线| 亚洲欧美日韩精品| 亚洲国产精品悠悠久久琪琪| 国产精品亚洲欧美| 欧美日韩一区三区| 欧美福利视频一区| 麻豆91精品| 久久久久久网址| 久久国产精品黑丝| 亚洲一区二区三区高清 | 美女成人午夜| 亚洲激情成人在线| 国产一区二区三区高清在线观看| 欧美午夜精品久久久久久超碰| 欧美顶级艳妇交换群宴| 久久久久一本一区二区青青蜜月| 午夜精品婷婷| 午夜精品视频一区| 亚洲欧美日本国产有色| 一区二区三区产品免费精品久久75| 亚洲激情在线| 欧美综合国产精品久久丁香| 亚洲在线一区二区三区| 亚洲午夜精品| 亚洲欧美一区二区精品久久久| 亚洲视频一二区| 亚洲自拍16p| 亚洲欧美影音先锋| 午夜精品久久久久久久99水蜜桃| 亚洲无人区一区| 亚洲欧美在线aaa| 久久精品国产免费观看| 久久免费国产精品1| 麻豆精品一区二区综合av| 欧美91精品| 亚洲激情综合| 日韩视频中文字幕| 亚洲欧美日韩精品久久久| 亚洲一区自拍| 久久久国产一区二区| 看片网站欧美日韩| 欧美日韩成人综合天天影院| 欧美午夜国产| 国产一区视频网站| 亚洲国产日韩欧美在线99| 日韩视频专区| 性娇小13――14欧美| 久久综合电影一区| 性做久久久久久久免费看| 久久久精品一品道一区| 亚洲福利专区| 亚洲一区二区三区免费在线观看| 欧美一区二粉嫩精品国产一线天| 久久综合给合久久狠狠狠97色69| 欧美成人一品| 国产伦精品一区二区三区视频孕妇| 黑人中文字幕一区二区三区| 亚洲三级免费| 欧美中文在线免费| 亚洲国产精品123| 亚洲欧美激情诱惑| 麻豆精品视频在线观看| 国产精品久久一卡二卡| 亚洲激情电影中文字幕| 亚洲综合色视频| 欧美国产在线视频| 亚洲女人av| 欧美日韩不卡| 精品不卡视频| 午夜精彩视频在线观看不卡| 欧美韩日视频| 欧美一区二区成人6969| 欧美日韩亚洲综合| 亚洲电影免费观看高清完整版| 1000部精品久久久久久久久| 亚洲欧美日韩国产一区| 亚洲国产精品t66y| 久久成人国产精品| 国产精品jizz在线观看美国 |