青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Camera calibration With OpenCV

http://www.swarthmore.edu/NatSci/mzucker1/opencv-2.4.10-docs/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://www.pudn.com/Download/item/id/1006592.html
http://read.pudn.com/downloads214/sourcecode/graph/texture_mapping/1006592/FisheyeImageCalibration3.m__.htm
https://stackoverflow.com/questions/28483324/fisheye-lens-calibration-with-opencv-3-0-beta

Camera calibration With OpenCV

Cameras have been around for a long-long time. However, with the introduction of the cheap pinhole cameras in the late 20th century, they became a common occurrence in our everyday life. Unfortunately, this cheapness comes with its price: significant distortion. Luckily, these are constants and with a calibration and some remapping we can correct this. Furthermore, with calibration you may also determine the relation between the camera’s natural units (pixels) and the real world units (for example millimeters).

Theory

For the distortion OpenCV takes into account the radial and tangential factors. For the radial factor one uses the following formula:

x_{corrected} = x( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6) \\ y_{corrected} = y( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6)

So for an old pixel point at (x,y) coordinates in the input image, its position on the corrected output image will be (x_{corrected} y_{corrected}). The presence of the radial distortion manifests in form of the “barrel” or “fish-eye” effect.

Tangential distortion occurs because the image taking lenses are not perfectly parallel to the imaging plane. It can be corrected via the formulas:

x_{corrected} = x + [ 2p_1xy + p_2(r^2+2x^2)] \\ y_{corrected} = y + [ p_1(r^2+ 2y^2)+ 2p_2xy]

So we have five distortion parameters which in OpenCV are presented as one row matrix with 5 columns:

Distortion_{coefficients}=(k_1 \hspace{10pt} k_2 \hspace{10pt} p_1 \hspace{10pt} p_2 \hspace{10pt} k_3)

Now for the unit conversion we use the following formula:

\left [ \begin{matrix} x \\ y \\ w \end{matrix} \right ] = \left [ \begin{matrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} X \\ Y \\ Z \end{matrix} \right ]

Here the presence of w is explained by the use of homography coordinate system (and w=Z). The unknown parameters are f_x and f_y (camera focal lengths) and (c_x, c_y) which are the optical centers expressed in pixels coordinates. If for both axes a common focal length is used with a given a aspect ratio (usually 1), then f_y=f_x*a and in the upper formula we will have a single focal length f. The matrix containing these four parameters is referred to as the camera matrix. While the distortion coefficients are the same regardless of the camera resolutions used, these should be scaled along with the current resolution from the calibrated resolution.

The process of determining these two matrices is the calibration. Calculation of these parameters is done through basic geometrical equations. The equations used depend on the chosen calibrating objects. Currently OpenCV supports three types of objects for calibration:

  • Classical black-white chessboard
  • Symmetrical circle pattern
  • Asymmetrical circle pattern

Basically, you need to take snapshots of these patterns with your camera and let OpenCV find them. Each found pattern results in a new equation. To solve the equation you need at least a predetermined number of pattern snapshots to form a well-posed equation system. This number is higher for the chessboard pattern and less for the circle ones. For example, in theory the chessboard pattern requires at least two snapshots. However, in practice we have a good amount of noise present in our input images, so for good results you will probably need at least 10 good snapshots of the input pattern in different positions.

Goal

The sample application will:

  • Determine the distortion matrix
  • Determine the camera matrix
  • Take input from Camera, Video and Image file list
  • Read configuration from XML/YAML file
  • Save the results into XML/YAML file
  • Calculate re-projection error

Source code

You may also find the source code in the samples/cpp/tutorial_code/calib3d/camera_calibration/ folder of the OpenCV source library or download it from here. The program has a single argument: the name of its configuration file. If none is given then it will try to open the one named “default.xml”. Here's a sample configuration file in XML format. In the configuration file you may choose to use camera as an input, a video file or an image list. If you opt for the last one, you will need to create a configuration file where you enumerate the images to use. Here’s an example of this. The important part to remember is that the images need to be specified using the absolute path or the relative one from your application’s working directory. You may find all this in the samples directory mentioned above.

The application starts up with reading the settings from the configuration file. Although, this is an important part of it, it has nothing to do with the subject of this tutorial: camera calibration. Therefore, I’ve chosen not to post the code for that part here. Technical background on how to do this you can find in the File Input and Output using XML and YAML files tutorial.

Explanation

  1. Read the settings.

    Settings s; const string inputSettingsFile = argc > 1 ? argv[1] : "default.xml"; FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings if (!fs.isOpened()) {       cout << "Could not open the configuration file: \"" << inputSettingsFile << "\"" << endl;       return -1; } fs["Settings"] >> s; fs.release();                                         // close Settings file  if (!s.goodInput) {       cout << "Invalid input detected. Application stopping. " << endl;       return -1; } 

    For this I’ve used simple OpenCV class input operation. After reading the file I’ve an additional post-processing function that checks validity of the input. Only if all inputs are good then goodInputvariable will be true.

  2. Get next input, if it fails or we have enough of them - calibrate. After this we have a big loop where we do the following operations: get the next image from the image list, camera or video file. If this fails or we have enough images then we run the calibration process. In case of image we step out of the loop and otherwise the remaining frames will be undistorted (if the option is set) via changing from DETECTION mode to the CALIBRATED one.

    for(int i = 0;;++i) {   Mat view;   bool blinkOutput = false;    view = s.nextImage();    //-----  If no more image, or got enough, then stop calibration and show result -------------   if( mode == CAPTURING && imagePoints.size() >= (unsigned)s.nrFrames )   {         if( runCalibrationAndSave(s, imageSize,  cameraMatrix, distCoeffs, imagePoints))               mode = CALIBRATED;         else               mode = DETECTION;   }   if(view.empty())          // If no more images then run calibration, save and stop loop.   {             if( imagePoints.size() > 0 )                   runCalibrationAndSave(s, imageSize,  cameraMatrix, distCoeffs, imagePoints);             break;   imageSize = view.size();  // Format input image.   if( s.flipVertical )    flip( view, view, 0 );   } 

    For some cameras we may need to flip the input image. Here we do this too.

  3. Find the pattern in the current input. The formation of the equations I mentioned above aims to finding major patterns in the input: in case of the chessboard this are corners of the squares and for the circles, well, the circles themselves. The position of these will form the result which will be written into the pointBuf vector.

    vector<Point2f> pointBuf;  bool found; switch( s.calibrationPattern ) // Find feature points on the input format { case Settings::CHESSBOARD:   found = findChessboardCorners( view, s.boardSize, pointBuf,   CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FAST_CHECK | CV_CALIB_CB_NORMALIZE_IMAGE);   break; case Settings::CIRCLES_GRID:   found = findCirclesGrid( view, s.boardSize, pointBuf );   break; case Settings::ASYMMETRIC_CIRCLES_GRID:   found = findCirclesGrid( view, s.boardSize, pointBuf, CALIB_CB_ASYMMETRIC_GRID );   break; } 

    Depending on the type of the input pattern you use either the findChessboardCorners or the findCirclesGrid function. For both of them you pass the current image and the size of the board and you’ll get the positions of the patterns. Furthermore, they return a boolean variable which states if the pattern was found in the input (we only need to take into account those images where this is true!).

    Then again in case of cameras we only take camera images when an input delay time is passed. This is done in order to allow user moving the chessboard around and getting different images. Similar images result in similar equations, and similar equations at the calibration step will form an ill-posed problem, so the calibration will fail. For square images the positions of the corners are only approximate. We may improve this by calling the cornerSubPix function. It will produce better calibration result. After this we add a valid inputs result to the imagePoints vector to collect all of the equations into a single container. Finally, for visualization feedback purposes we will draw the found points on the input image using findChessboardCorners function.

    if ( found)                // If done with success,   {       // improve the found corners' coordinate accuracy for chessboard         if( s.calibrationPattern == Settings::CHESSBOARD)         {             Mat viewGray;             cvtColor(view, viewGray, CV_BGR2GRAY);             cornerSubPix( viewGray, pointBuf, Size(11,11),               Size(-1,-1), TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 ));         }          if( mode == CAPTURING &&  // For camera only take new samples after delay time             (!s.inputCapture.isOpened() || clock() - prevTimestamp > s.delay*1e-3*CLOCKS_PER_SEC) )         {             imagePoints.push_back(pointBuf);             prevTimestamp = clock();             blinkOutput = s.inputCapture.isOpened();         }          // Draw the corners.         drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );   } 
  4. Show state and result to the user, plus command line control of the application. This part shows text output on the image.

    //----------------------------- Output Text ------------------------------------------------ string msg = (mode == CAPTURING) ? "100/100" :           mode == CALIBRATED ? "Calibrated" : "Press 'g' to start"; int baseLine = 0; Size textSize = getTextSize(msg, 1, 1, 1, &baseLine); Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10);  if( mode == CAPTURING ) {   if(s.showUndistorsed)     msg = format( "%d/%d Undist", (int)imagePoints.size(), s.nrFrames );   else     msg = format( "%d/%d", (int)imagePoints.size(), s.nrFrames ); }  putText( view, msg, textOrigin, 1, 1, mode == CALIBRATED ?  GREEN : RED);  if( blinkOutput )    bitwise_not(view, view); 

    If we ran calibration and got camera’s matrix with the distortion coefficients we may want to correct the image using undistort function:

    //------------------------- Video capture  output  undistorted ------------------------------ if( mode == CALIBRATED && s.showUndistorsed ) {   Mat temp = view.clone();   undistort(temp, view, cameraMatrix, distCoeffs); } //------------------------------ Show image and check for input commands ------------------- imshow("Image View", view); 

    Then we wait for an input key and if this is u we toggle the distortion removal, if it is g we start again the detection process, and finally for the ESC key we quit the application:

    char key =  waitKey(s.inputCapture.isOpened() ? 50 : s.delay); if( key  == ESC_KEY )       break;  if( key == 'u' && mode == CALIBRATED )    s.showUndistorsed = !s.showUndistorsed;  if( s.inputCapture.isOpened() && key == 'g' ) {   mode = CAPTURING;   imagePoints.clear(); } 
  5. Show the distortion removal for the images too. When you work with an image list it is not possible to remove the distortion inside the loop. Therefore, you must do this after the loop. Taking advantage of this now I’ll expand the undistort function, which is in fact first calls initUndistortRectifyMap to find transformation matrices and then performs transformation using remap function. Because, after successful calibration map calculation needs to be done only once, by using this expanded form you may speed up your application:

    if( s.inputType == Settings::IMAGE_LIST && s.showUndistorsed ) {   Mat view, rview, map1, map2;   initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),       getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0),       imageSize, CV_16SC2, map1, map2);    for(int i = 0; i < (int)s.imageList.size(); i++ )   {       view = imread(s.imageList[i], 1);       if(view.empty())           continue;       remap(view, rview, map1, map2, INTER_LINEAR);       imshow("Image View", rview);       char c = waitKey();       if( c  == ESC_KEY || c == 'q' || c == 'Q' )           break;   } } 

The calibration and save

Because the calibration needs to be done only once per camera, it makes sense to save it after a successful calibration. This way later on you can just load these values into your program. Due to this we first make the calibration, and if it succeeds we save the result into an OpenCV style XML or YAML file, depending on the extension you give in the configuration file.

Therefore in the first function we just split up these two processes. Because we want to save many of the calibration variables we’ll create these variables here and pass on both of them to the calibration and saving function. Again, I’ll not show the saving part as that has little in common with the calibration. Explore the source file in order to find out how and what:

bool runCalibrationAndSave(Settings& s, Size imageSize, Mat&  cameraMatrix, Mat& distCoeffs,vector<vector<Point2f> > imagePoints ) {  vector<Mat> rvecs, tvecs;  vector<float> reprojErrs;  double totalAvgErr = 0;   bool ok = runCalibration(s,imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs,                           reprojErrs, totalAvgErr);  cout << (ok ? "Calibration succeeded" : "Calibration failed")      << ". avg re projection error = "  << totalAvgErr ;   if( ok )   // save only if the calibration was done with success      saveCameraParams( s, imageSize, cameraMatrix, distCoeffs, rvecs ,tvecs, reprojErrs,                          imagePoints, totalAvgErr);  return ok; } 

We do the calibration with the help of the calibrateCamera function. It has the following parameters:

  • The object points. This is a vector of Point3f vector that for each input image describes how should the pattern look. If we have a planar pattern (like a chessboard) then we can simply set all Z coordinates to zero. This is a collection of the points where these important points are present. Because, we use a single pattern for all the input images we can calculate this just once and multiply it for all the other input views. We calculate the corner points with the calcBoardCornerPositions function as:

    void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,                   Settings::Pattern patternType /*= Settings::CHESSBOARD*/) { corners.clear();  switch(patternType) { case Settings::CHESSBOARD: case Settings::CIRCLES_GRID:   for( int i = 0; i < boardSize.height; ++i )     for( int j = 0; j < boardSize.width; ++j )         corners.push_back(Point3f(float( j*squareSize ), float( i*squareSize ), 0));   break;  case Settings::ASYMMETRIC_CIRCLES_GRID:   for( int i = 0; i < boardSize.height; i++ )      for( int j = 0; j < boardSize.width; j++ )         corners.push_back(Point3f(float((2*j + i % 2)*squareSize), float(i*squareSize), 0));   break; } } 

    And then multiply it as:

    vector<vector<Point3f> > objectPoints(1); calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], s.calibrationPattern); objectPoints.resize(imagePoints.size(),objectPoints[0]); 
  • The image points. This is a vector of Point2f vector which for each input image contains coordinates of the important points (corners for chessboard and centers of the circles for the circle pattern). We have already collected this from findChessboardCorners or findCirclesGrid function. We just need to pass it on.

  • The size of the image acquired from the camera, video file or the images.

  • The camera matrix. If we used the fixed aspect ratio option we need to set the f_x to zero:

    cameraMatrix = Mat::eye(3, 3, CV_64F); if( s.flag & CV_CALIB_FIX_ASPECT_RATIO )      cameraMatrix.at<double>(0,0) = 1.0; 
  • The distortion coefficient matrix. Initialize with zero.

    distCoeffs = Mat::zeros(8, 1, CV_64F); 
  • For all the views the function will calculate rotation and translation vectors which transform the object points (given in the model coordinate space) to the image points (given in the world coordinate space). The 7-th and 8-th parameters are the output vector of matrices containing in the i-th position the rotation and translation vector for the i-th object point to the i-th image point.

  • The final argument is the flag. You need to specify here options like fix the aspect ratio for the focal length, assume zero tangential distortion or to fix the principal point.

double rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix,                             distCoeffs, rvecs, tvecs, s.flag|CV_CALIB_FIX_K4|CV_CALIB_FIX_K5); 
  • The function returns the average re-projection error. This number gives a good estimation of precision of the found parameters. This should be as close to zero as possible. Given the intrinsic, distortion, rotation and translation matrices we may calculate the error for one view by using the projectPoints to first transform the object point to image point. Then we calculate the absolute norm between what we got with our transformation and the corner/circle finding algorithm. To find the average error we calculate the arithmetical mean of the errors calculated for all the calibration images.

    double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints,                           const vector<vector<Point2f> >& imagePoints,                           const vector<Mat>& rvecs, const vector<Mat>& tvecs,                           const Mat& cameraMatrix , const Mat& distCoeffs,                           vector<float>& perViewErrors) { vector<Point2f> imagePoints2; int i, totalPoints = 0; double totalErr = 0, err; perViewErrors.resize(objectPoints.size());  for( i = 0; i < (int)objectPoints.size(); ++i ) {   projectPoints( Mat(objectPoints[i]), rvecs[i], tvecs[i], cameraMatrix,  // project                                        distCoeffs, imagePoints2);   err = norm(Mat(imagePoints[i]), Mat(imagePoints2), CV_L2);              // difference    int n = (int)objectPoints[i].size();   perViewErrors[i] = (float) std::sqrt(err*err/n);                        // save for this view   totalErr        += err*err;                                             // sum it up   totalPoints     += n; }  return std::sqrt(totalErr/totalPoints);              // calculate the arithmetical mean } 

Results

Let there be this input chessboard pattern which has a size of 9 X 6. I’ve used an AXIS IP camera to create a couple of snapshots of the board and saved it into VID5 directory. I’ve put this inside the images/CameraCalibration folder of my working directory and created the following VID5.XML file that describes which images to use:

<?xml version="1.0"?> <opencv_storage> <images> images/CameraCalibration/VID5/xx1.jpg images/CameraCalibration/VID5/xx2.jpg images/CameraCalibration/VID5/xx3.jpg images/CameraCalibration/VID5/xx4.jpg images/CameraCalibration/VID5/xx5.jpg images/CameraCalibration/VID5/xx6.jpg images/CameraCalibration/VID5/xx7.jpg images/CameraCalibration/VID5/xx8.jpg </images> </opencv_storage> 

Then passed images/CameraCalibration/VID5/VID5.XML as an input in the configuration file. Here’s a chessboard pattern found during the runtime of the application:

A found chessboard

After applying the distortion removal we get:

Distortion removal for File List

The same works for this asymmetrical circle pattern by setting the input width to 4 and height to 11. This time I’ve used a live camera feed by specifying its ID (“1”) for the input. Here’s, how a detected pattern should look:

Asymmetrical circle detection

In both cases in the specified output XML/YAML file you’ll find the camera and distortion coefficients matrices:

<Camera_Matrix type_id="opencv-matrix"> <rows>3</rows> <cols>3</cols> <dt>d</dt> <data>  6.5746697944293521e+002 0. 3.1950000000000000e+002 0.  6.5746697944293521e+002 2.3950000000000000e+002 0. 0. 1.</data></Camera_Matrix> <Distortion_Coefficients type_id="opencv-matrix"> <rows>5</rows> <cols>1</cols> <dt>d</dt> <data>  -4.1802327176423804e-001 5.0715244063187526e-001 0. 0.  -5.7843597214487474e-001</data></Distortion_Coefficients> 

Add these values as constants to your program, call the initUndistortRectifyMap and the remap function to remove distortion and enjoy distortion free inputs for cheap and low quality cameras.

You may observe a runtime instance of this on the YouTube here.

posted on 2017-11-10 16:57 zmj 閱讀(1585) 評論(0)  編輯 收藏 引用


只有注冊用戶登錄后才能發(fā)表評論。
網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            久久另类ts人妖一区二区| 欧美在线高清| 99re66热这里只有精品3直播| 欧美性一区二区| 亚洲欧美在线网| 欧美成人免费网| 亚洲国产精品精华液2区45| 欧美手机在线视频| 免费在线成人| 激情婷婷久久| 国产精品日韩久久久| 久久九九久精品国产免费直播| 亚洲伦理在线免费看| 欧美国产日韩在线观看| 另类综合日韩欧美亚洲| 国产精品99久久久久久有的能看| 国产网站欧美日韩免费精品在线观看 | 午夜国产一区| 亚洲色图自拍| 免费久久99精品国产自| 亚洲主播在线播放| 欧美在线观看天堂一区二区三区| 久久精品理论片| 久久精品国产第一区二区三区| 免费成人网www| 久久狠狠久久综合桃花| 激情视频一区| 欧美日韩中文字幕综合视频| 欧美日韩午夜在线| 夜夜嗨av一区二区三区网站四季av| 欧美一区二区三区四区夜夜大片 | 麻豆精品网站| 欧美成人免费小视频| 久久综合影视| 久久久91精品| 一区二区三区日韩在线观看| 亚洲永久精品国产| 欧美国产精品v| 亚洲人成网站999久久久综合| 久久综合狠狠综合久久综合88| 美女图片一区二区| 欧美精品电影| 亚洲男人的天堂在线| 国内精品久久久久影院色| 欧美一进一出视频| 国产亚洲成av人在线观看导航 | 久久久中精品2020中文| 久久精品理论片| 午夜伦理片一区| 国产欧美一区二区三区久久 | 一区二区三区 在线观看视| 在线一区免费观看| 噜噜噜噜噜久久久久久91| 亚洲小视频在线观看| 欧美日韩亚洲在线| 亚洲宅男天堂在线观看无病毒| 久久久久久9| 亚洲人成亚洲人成在线观看图片| 性感少妇一区| 亚洲视频一起| 国产精品看片资源| 欧美中文字幕视频在线观看| 久久天天躁狠狠躁夜夜爽蜜月| 国产精品久在线观看| 亚洲日韩视频| 国内精品久久久久久久影视麻豆| 免费在线欧美黄色| 一区二区高清视频| 亚洲专区一区| 性做久久久久久久免费看| 99精品99久久久久久宅男| 国产麻豆日韩| 久久精品卡一| 亚洲一区二区在线免费观看视频 | 久久精品在线视频| 国产精品毛片va一区二区三区| 亚洲精品综合久久中文字幕| 亚洲色诱最新| 女人色偷偷aa久久天堂| 一区二区三区成人| 9色精品在线| 欧美日韩免费一区| 久久成人在线| 蜜臀99久久精品久久久久久软件 | 国产日韩欧美不卡| 久久久人成影片一区二区三区| 久久av一区二区三区漫画| 欧美视频中文字幕| 国产综合av| 亚洲欧洲精品天堂一级| 亚洲国产经典视频| 毛片精品免费在线观看| 日韩视频在线永久播放| 一区二区三区日韩精品| 一区二区福利| 在线观看三级视频欧美| 久久婷婷蜜乳一本欲蜜臀| 久久综合导航| 亚洲精品国产精品国自产观看浪潮 | 日韩亚洲欧美高清| 亚洲自拍另类| 久久久久久综合| 亚洲免费一区二区| 欧美视频一区二区三区四区 | 久久夜色精品国产| 亚洲欧美日韩在线高清直播| 亚洲欧洲精品一区二区| 久久久久久香蕉网| 国产精品一区二区三区免费观看| 久久成人在线| 亚洲欧美国产三级| 在线视频中文亚洲| 在线一区日本视频| 久久久久.com| 久久精品官网| av成人福利| 亚洲激情在线| 日韩网站在线| 欧美在线999| 久久久精品一品道一区| 国产视频一区在线观看| 亚洲一卡久久| 亚洲欧洲精品一区二区三区不卡| 美脚丝袜一区二区三区在线观看| 亚洲一区二区三区欧美| 午夜视频一区二区| 蜜臀av在线播放一区二区三区| 国产精品久久一卡二卡| 亚洲第一中文字幕在线观看| 在线免费观看日本一区| 久久精品一区二区| 在线一区二区三区做爰视频网站| 欧美一区午夜精品| 欧美黄在线观看| 亚洲欧美日韩在线不卡| 欧美一区二区三区视频免费播放| 一区二区三区视频免费在线观看| 午夜在线精品| 欧美片在线观看| 99在线精品观看| 欧美成人性网| 国产欧美精品| 国产精品夫妻自拍| 久久精品视频一| 久久精品91久久香蕉加勒比| 国产美女一区| 久久精品首页| 久久国产天堂福利天堂| 亚洲欧洲久久| 久久国产福利国产秒拍| 欧美有码在线观看视频| 国产主播精品在线| 亚洲精品免费一二三区| 久久精品日韩| 激情欧美一区| 亚洲免费精品| 樱桃视频在线观看一区| 99精品欧美一区二区蜜桃免费| 亚洲国产91色在线| 久久久国产午夜精品| 亚洲视频在线观看三级| 久久成人精品| 夜夜嗨av色综合久久久综合网 | 国产日本欧美一区二区三区在线| 樱桃视频在线观看一区| 日韩亚洲欧美一区二区三区| 久久综合色影院| 欧美亚一区二区| 99精品欧美| 国产精品美女久久久久久免费| 美日韩精品免费观看视频| 国产精品区一区二区三区| 亚洲精品国产精品国自产在线 | 国产精品黄色| 嫩模写真一区二区三区三州| 韩国亚洲精品| 亚洲欧美精品一区| 欧美第一黄网免费网站| 老司机一区二区三区| 久久这里只精品最新地址| 欧美视频一区二区三区四区| 亚洲小视频在线| 亚洲第一精品福利| 亚洲国产精品久久久久秋霞影院 | 国产精品社区| 最新精品在线| 亚洲国产精品一区二区尤物区| 欧美日韩午夜剧场| 亚洲精品一区二区三区不| 亚洲精品一区二区三区福利| 国产欧美韩日| 欧美黄在线观看| 久久免费高清视频| 亚洲午夜久久久| 亚洲一区欧美激情| 亚洲三级影院| 欧美日韩在线播放三区四区| 久久露脸国产精品| 午夜在线播放视频欧美| 免费人成精品欧美精品|