青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Shape Detection & Tracking using Contours

https://opencv-srf.blogspot.jp/2011/09/object-detection-tracking-using-contours.html
In the previous tutorial, we could detect and track an object using color separation. But we could not identify the shape of the object there. In this tutorial, let's see how to identify a shape and position of an object using contours with OpenCV.

Using contours with OpenCV, you can get a sequence of points of vertices of each white patch (White patches are considered as polygons). As example, you will get 3 points (vertices)  for a triangle, and 4 points for quadrilaterals. So, you can identify any polygon by the number of vertices of that polygon. You can even identify features of polygons such as convexity, concavity, equilateral and etc by calculating and comparing distances between vertices. 

Let's see how this can be done with OpenCV. All you need, is a binary image in which your objects should be white and the background should be black.

Binary Image


Now I am going to identify triangles and  quadrilaterals and heptagon in the above image using a C++ application with OpenCV.  I'll draw a line along the perimeter of every identified polygon with colors blue for triangle, green for quadrilaterals and red for heptagons. Here is the code.


///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////



#include "stdafx.h"
#include <cv.h>
#include <highgui.h>
using namespace std;

int main()
{

IplImage* img =  cvLoadImage("C:/Users/SHERMAL/Desktop/FindingContours.png");

//show the original image
cvNamedWindow("Raw");
cvShowImage("Raw",img);

//converting the original image into grayscale
IplImage* imgGrayScale = cvCreateImage(cvGetSize(img), 8, 1); 
cvCvtColor(img,imgGrayScale,CV_BGR2GRAY);

//thresholding the grayscale image to get better results
cvThreshold(imgGrayScale,imgGrayScale,128,255,CV_THRESH_BINARY);  

CvSeq* contours;  //hold the pointer to a contour in the memory block
CvSeq* result;   //hold sequence of points of a contour
CvMemStorage *storage = cvCreateMemStorage(0); //storage area for all contours

//finding all contours in the image
cvFindContours(imgGrayScale, storage, &contours, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));

//iterating through each contour
while(contours)
{
//obtain a sequence of points of contour, pointed by the variable 'contour'
result = cvApproxPoly(contours, sizeof(CvContour), storage, CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0);
       
//if there are 3  vertices  in the contour(It should be a triangle)
if(result->total==3 )
{
//iterating through each point
CvPoint *pt[3];
for(int i=0;i<3;i++){
pt[i] = (CvPoint*)cvGetSeqElem(result, i);
}

//drawing lines around the triangle
cvLine(img, *pt[0], *pt[1], cvScalar(255,0,0),4);
cvLine(img, *pt[1], *pt[2], cvScalar(255,0,0),4);
cvLine(img, *pt[2], *pt[0], cvScalar(255,0,0),4);

}

//if there are 4 vertices in the contour(It should be a quadrilateral)
else if(result->total==4 )
{
//iterating through each point
CvPoint *pt[4];
for(int i=0;i<4;i++){
pt[i] = (CvPoint*)cvGetSeqElem(result, i);
}

//drawing lines around the quadrilateral
cvLine(img, *pt[0], *pt[1], cvScalar(0,255,0),4);
cvLine(img, *pt[1], *pt[2], cvScalar(0,255,0),4);
cvLine(img, *pt[2], *pt[3], cvScalar(0,255,0),4);
cvLine(img, *pt[3], *pt[0], cvScalar(0,255,0),4);
}

//if there are 7  vertices  in the contour(It should be a heptagon)
else if(result->total ==7  )
{
//iterating through each point
CvPoint *pt[7];
for(int i=0;i<7;i++){
pt[i] = (CvPoint*)cvGetSeqElem(result, i);
}

//drawing lines around the heptagon
cvLine(img, *pt[0], *pt[1], cvScalar(0,0,255),4);
cvLine(img, *pt[1], *pt[2], cvScalar(0,0,255),4);
cvLine(img, *pt[2], *pt[3], cvScalar(0,0,255),4);
cvLine(img, *pt[3], *pt[4], cvScalar(0,0,255),4);
cvLine(img, *pt[4], *pt[5], cvScalar(0,0,255),4);
cvLine(img, *pt[5], *pt[6], cvScalar(0,0,255),4);
cvLine(img, *pt[6], *pt[0], cvScalar(0,0,255),4);
}

//obtain the next contour
contours = contours->h_next;
}

//show the image in which identified shapes are marked   
cvNamedWindow("Tracked");
cvShowImage("Tracked",img);
   
cvWaitKey(0); //wait for a key press

//cleaning up
cvDestroyAllWindows(); 
cvReleaseMemStorage(&storage);
cvReleaseImage(&img);
cvReleaseImage(&imgGrayScale);

return 0;
}

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
You can download this OpenCV visual c++ project from here(The downloaded file is a compressed .rar folder. So, you have to extract it using Winrar or other suitable software) 


White blobs with different shapes are detected using contours with OpenCV functions

As you can see, triangles are marked with blue, quadrilaterals are marked with green and heptagons are marked with red. So, now it is obvious that this method is capable of identifying shapes. 

Explanation

Here I have converted the original image in to gray scale. It is because this method works only with gray scale image with single channel. To get better results, I threshold the gray-scale image using 'cvThreshold' function. You can use your own way to threshold the image. Then I find all contours in the thresholded image and identify and track all triangles, quadrilaterals and heptagons.

Let's discuss new OpenCV functions, found in this application.



  • cvThreshold( const Mat& srcMat& dst, double threshVal, double max, int thresholdType )

applies a fix level threshold to the each element of 'src' array write a value to corresponding array element of 'dst'

Arguements -
  • const Mat& src - Source array (This should be single channel)
  • Mat& dst - Destination array which has the same size and same type as the 'src'
  • double threshVal - Threshold value
  • double max - Maximum value to use with 'THRESH_BINARY' and 'THRESH_BINARY_INV' which are thresholding types
  • int thresholdType - You can use one of the following for this arguement
    • THRESH_BINARY
                       dst(x,y)=max,             if src(x,y) > ThreshVal
                       dst(x,y)=0,                 if src(x,y) < ThreshVal
  • THRESH_BINARY_INV
                      dst(x,y)=0,                  if src(x,y) > ThreshVal
                      dst(x,y)=max,              if src(x,y) < ThreshVal
  • THRESH_TOZERO
                      dst(x,y)=src(x,y),       if src(x,y) > ThreshVal
                            dst(x,y)=0,                 if src(x,y) < ThreshVal
  • THRESH_TOZERO_INV
                      dst(x,y)=0,                  if src(x,y) > ThreshVal
                      dst(x,y)=src(x,y),        if src(x,y) < ThreshVal
    • THRESH_TRUNC
                      dst(x,y)=threshVal,    if src(x,y) > ThreshVal
                      dst(x,y)=src(x,y),        if src(x,y) < ThreshVal


In the above application, I have used 'THRESH_BINARY', because I want to assign 255 (white) where the objects are located and 0 (black) elsewhere.


  • cvCreateMemStorage(int byteSize)
Creates memory storage which has the capacity specified by the parameter 'byteSize'. But if byteSize=0, the allocated capacity is the default value(usually 64 Kb)


  • cvFindContours( CvArr* img, CvMemStorage* str, CvSeq** first_contour, int header_size, int mode, int method, CvPoint offset )
Find all contours in a binary image
Arguments - 
  • CvArr* img - Source image (This should be 8 bit single channel). All non-zero pixels are considered as 1 and all zero remain zero.
  • CvMemStorage* str - Memory blocks to store all obtained contours
  • CvSeq** first_contour - store a pointer to the first contour in the memory block, 'str'
  • int header_size - size of the sequence header
  • int mode - mode of retrieval of contours from the image
                You have to choose one of the following
    • CV_RETR_LIST - Retrieves all of the contours and put them in a list
    • CV_RETR_EXTERNAL - Retrieves only the extreme outer contours
    • CV_RETR_CCOMP - Retrieves all of the contours and organizes them into a two-level hierarchy: on the top level are the external boundaries of the components, on the second level are the boundaries of the holes
    • CV_RETR_TREE - Retrieves all of the contours and reconstructs the full hierarchy of nested contours

  • int method - Approximation method
                  You have to choose one of the following

    • CV_CHAIN_CODE - Outputs contours in the Freeman chain code
    • CV_CHAIN_APPROX_NONE - Translates all of the points from the chain code into points
    • CV_CHAIN_APPROX_SIMPLE - Compresses horizontal, vertical, and diagonal segments and leaves only their end points
    • CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS - Applies one of the flavors of the Teh-Chin chain approximation algorithm.
    • CV_LINK_RUNS - uses a completely different contour retrieval algorithm by linking horizontal segments of 1’s. Only the 'CV_RETR_LIST' retrieval mode can be used with this method.
  • CvPoint offset - Offset by which every contour point should be shifted. This is useful when we have set ROI (Region Of Interest) in the image. Normally we set the offset to 'cvPoint(0,0)'

  • cvApproxPoly( const void* src, int header_size, CvMemStorage* storage, int method, double para1, int para2 )
Approximate polygonal curves with specified precision

arguments - 
  • const void* src - Sequence of points
  • int header_size -  size of the sequence header
  • CvMemStorage* storage - memory block that contains all contours
  • int method - Approximation method. (The only method, available to use for this argument is 'CV_POLY_APPROX_DP')
  • double para1 - approximation accuracy
  • int para2 - Determines whether the single sequence should be approximated or all sequences in the same level or below 

  • cvGetSeqElem( const CvSeq* seq, int index )
Returns a pointer to the element of 'seq' at 'index'

  • cvReleaseMemStorage( CvMemStorage** storage )
Deallocate memory blocks which have been allocated by 'cvCreateMemStorage()' function




Real World Example


The above example is not really useful in practical situation. Usually, there are lots of noises in an image such as irregular lighting, shadows, camera irregularities and etc. So, above application as it is, cannot be used to identify shapes in a real image. It should be modified to cope with these noises. And images usually have 3 channels (BGR color). So, it should be converted into grey-scale which has only one channel. 

Here is a real world image of an arena of a robot soccer, taken from a camera.

Robot Arena

Here, we are going to detect and mark the perimeter of each triangle in the image with a blue line. Let's see the modified OpenCV c++ application which accomplish the above task.

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#include "stdafx.h"
#include <cv.h>
#include <highgui.h>
using namespace std;

int main()
{

IplImage* img =  cvLoadImage("C:/Users/SHERMAL/Desktop/DetectingContours.jpg");

//show the original image
cvNamedWindow("Original");
cvShowImage("Original",img);

 //smooth the original image using Gaussian kernel to remove noise
cvSmooth(imgimg, CV_GAUSSIAN,3,3);

//converting the original image into grayscale
IplImage* imgGrayScale = cvCreateImage(cvGetSize(img), 8, 1); 
cvCvtColor(img,imgGrayScale,CV_BGR2GRAY);

cvNamedWindow("GrayScale Image");
cvShowImage("GrayScale Image",imgGrayScale);

//thresholding the grayscale image to get better results
cvThreshold(imgGrayScale,imgGrayScale,100,255,CV_THRESH_BINARY_INV);

cvNamedWindow("Thresholded Image");
cvShowImage("Thresholded Image",imgGrayScale);

CvSeq* contour;  //hold the pointer to a contour
CvSeq* result;   //hold sequence of points of a contour
CvMemStorage *storage = cvCreateMemStorage(0); //storage area for all contours

//finding all contours in the image
cvFindContours(imgGrayScale, storage, &contour, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));

//iterating through each contour
while(contour)
{
//obtain a sequence of points of the countour, pointed by the variable 'countour'
result = cvApproxPoly(contour, sizeof(CvContour), storage, CV_POLY_APPROX_DP, cvContourPerimeter(contour)*0.02, 0);
       
//if there are 3 vertices  in the contour and the area of the triangle is more than 100 pixels
if(result->total==3 && fabs(cvContourArea(result, CV_WHOLE_SEQ))>100 )
{
//iterating through each point
CvPoint *pt[3];
for(int i=0;i<3;i++){
pt[i] = (CvPoint*)cvGetSeqElem(result, i);
}

//drawing lines around the triangle
cvLine(img, *pt[0], *pt[1], cvScalar(255,0,0),4);
cvLine(img, *pt[1], *pt[2], cvScalar(255,0,0),4);
cvLine(img, *pt[2], *pt[0], cvScalar(255,0,0),4);

}

//obtain the next contour
contour = contour->h_next;
}

//show the image in which identified shapes are marked   
cvNamedWindow("Tracked");
cvShowImage("Tracked",img);
   
cvWaitKey(0); //wait for a key press

//cleaning up
cvDestroyAllWindows(); 
cvReleaseMemStorage(&storage);
cvReleaseImage(&img);
cvReleaseImage(&imgGrayScale);

return 0;
}


/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
You can download this OpenCV visual c++ project from here(The downloaded file is a compressed .rar folder. So, you have to extract it using Winrar or other suitable software)


converted to gray scale Image with OpenCV cvCvtColor function
Gray scale Image

Thresholded the image using OpenCV cvThreshold function
Thresholded Image

Triangles Detected with OpenCV using contours with 3 vertices
Triangles Detected


In the same way, any shapes with any sizes can be detected with OpenCV.


Explanation

To reduce the noise level of the original image, I have smoothed the original image with a Gaussian kernel. 
Further you can change the 5th argument of cvApproxPoly() function to cope with the noise. In the above example, I have used cvContourPerimeter(contour)*0.02 as the 5th argument of cvApproxPoly(). You can try cvContourPerimeter(contour)*0.01 or cvContourPerimeter(contour)*0.04 or any other value and see the difference of the output yourselves.
Still there may be very small triangles, formed due to the noise. Therefore all triangles with areas less than 100 pixels are filtered out. 

Here are the new OpenCV functions, found in the above example.
  • cvContourArea(const CvArr* contour, CvSlice slice)
Calculate the area enclosed by sequence of contour points. 
  • const CvArr* contour - array of vertices of the contour
  • CvSlice slice - starting and ending point of the contour. 'CV_WHOLE_SEQ' will take the whole contour to calculate the area
The orientation of contour affects the area sign. So, this function may return a negative value. So, it should be used fabs() function to get the absolute value.

  • fabs(double x)

This function returns the absolute value of any floating point number. ( This is a C function, not a OpenCV function)


Tracking two Triangles in a Video


Here I am going to track the two triangles in a video. The blue triangle is marked with red and the green triangle is marked with blue. 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include <cv.h>
#include <highgui.h>
using namespace std;

IplImage* imgTracking=0;

int lastX1 = -1;
int lastY1 = -1;

int lastX2 = -1;
int lastY2 = -1;

void trackObject(IplImage* imgThresh){
CvSeq* contour;  //hold the pointer to a contour
CvSeq* result;     //hold sequence of points of a contour
CvMemStorage *storage = cvCreateMemStorage(0); //storage area for all contours

//finding all contours in the image
cvFindContours(imgThresh, storage, &contour, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));

//iterating through each contour
while(contour)
{
//obtain a sequence of points of the countour, pointed by the variable 'countour'
result = cvApproxPoly(contour, sizeof(CvContour), storage, CV_POLY_APPROX_DP, cvContourPerimeter(contour)*0.02, 0);
       
//if there are 3 vertices  in the contour and the area of the triangle is more than 100 pixels
if(result->total==3 && fabs(cvContourArea(result, CV_WHOLE_SEQ))>100 )
{
//iterating through each point
CvPoint *pt[3];
for(int i=0;i<3;i++){
pt[i] = (CvPoint*)cvGetSeqElem(result, i);
}

int posX=( pt[0]->x + pt[1]->x + pt[2]->x )/3;
int posY=( pt[0]->y + pt[1]->y + pt[2]->y )/3;

if(posX > 360 ){
if(lastX1>=0 && lastY1>=0 && posX>=0 && posY>=0){
// Draw a red line from the previous point to the current point
cvLine(imgTracking, cvPoint(posX, posY), cvPoint(lastX1, lastY1), cvScalar(0,0,255), 4);
}

lastX1 = posX;
lastY1 = posY;
}
else{
if(lastX2>=0 && lastY2>=0 && posX>=0 && posY>=0){
// Draw a blue line from the previous point to the current point
cvLine(imgTracking, cvPoint(posX, posY), cvPoint(lastX2, lastY2), cvScalar(255,0,0), 4);
}

lastX2 = posX;
lastY2 = posY;
}
}

//obtain the next contour
contour = contour->h_next;
}

cvReleaseMemStorage(&storage);
}


int main(){
    //load the video file to the memory
CvCapture *capture =     cvCaptureFromAVI("E:/Projects/Robot/IESL Robot/robot/a.avi");

    if(!capture){
        printf("Capture failure\n");
        return -1;
    }
      
    IplImage* frame=0;
    frame = cvQueryFrame(capture);           
    if(!frame) return -1;
   
    //create a blank image and assigned to 'imgTracking' which has the same size of original video
    imgTracking=cvCreateImage(cvGetSize(frame),IPL_DEPTH_8U, 3);
    cvZero(imgTracking); //covert the image, 'imgTracking' to black

    cvNamedWindow("Video");     

//iterate through each frames of the video     
    while(true){

        frame = cvQueryFrame(capture);           
        if(!frame) break;
        frame=cvCloneImage(frame); 
         
//smooth the original image using Gaussian kernel
        cvSmooth(frame, frame, CV_GAUSSIAN,3,3); 

//converting the original image into grayscale
IplImage* imgGrayScale = cvCreateImage(cvGetSize(frame), 8, 1); 
cvCvtColor(frame,imgGrayScale,CV_BGR2GRAY);
          
       //thresholding the grayscale image to get better results
cvThreshold(imgGrayScale,imgGrayScale,100,255,CV_THRESH_BINARY_INV);
            
        //track the possition of the ball
        trackObject(imgGrayScale);

        // Add the tracking image and the frame
        cvAdd(frame, imgTracking, frame);
             
        cvShowImage("Video", frame);
   
        //Clean up used images
        cvReleaseImage(&imgGrayScale);            
        cvReleaseImage(&frame);

        //Wait 10mS
        int c = cvWaitKey(10);
        //If 'ESC' is pressed, break the loop
        if((char)c==27 ) break;      
    }

    cvDestroyAllWindows();
    cvReleaseImage(&imgTracking);
    cvReleaseCapture(&capture);     

    return 0;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
You can download this OpenCV visual c++ project from here(The downloaded file is a compressed .rar folder. So, you have to extract it using Winrar or other suitable software)


Explanation

You already know how to obtain 3 vertices of a triangle with OpenCV. Averaging those 3 vertices gives you the center point of the triangle. So, it is easy to track triangles in a video.
Then, how do you identify two similar triangles separately? Here I have used a simple trick. I know that the green triangle always is in the left side of the video and the blue triangle is in the right side of the video. So, if the x coordinate of a triangle is more than (frame width)/2 = 360, then it is the blue triangle, otherwise it is the green triangle. 

Next Tutorial : 

posted on 2017-09-14 16:44 zmj 閱讀(942) 評(píng)論(0)  編輯 收藏 引用


只有注冊(cè)用戶(hù)登錄后才能發(fā)表評(píng)論。
網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問(wèn)   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            国产伦精品一区二区三区高清| 亚洲精品一区二区网址| 在线观看亚洲精品视频| 久久视频这里只有精品| 欧美精品免费在线| 国产精品久久波多野结衣| 欧美在线观看一区二区| 久久国产精品亚洲va麻豆| 久久免费高清视频| 国产精品一区二区欧美| 日韩视频免费在线| 欧美高清在线一区二区| 欧美成人蜜桃| 狠狠久久亚洲欧美专区| 亚洲精品国产日韩| 欧美久久久久久| 亚洲自拍另类| 欧美另类变人与禽xxxxx| 久久www成人_看片免费不卡| 农村妇女精品| 久久理论片午夜琪琪电影网| 欧美日韩国产三级| 亚洲精品欧美| 久热精品视频在线| 久久国产精品第一页| 欧美视频日韩视频| 91久久国产自产拍夜夜嗨| 国产午夜精品麻豆| 亚洲久久一区| 欧美一级网站| 欧美大片国产精品| 欧美成人影音| 尤物精品国产第一福利三区 | 欧美日韩精品一区二区在线播放| 久久综合国产精品| 亚洲午夜小视频| 亚洲自拍偷拍福利| 欧美一区二区视频在线| 欧美午夜宅男影院| 亚洲一区免费网站| 翔田千里一区二区| 精品成人久久| 欧美与黑人午夜性猛交久久久| 亚洲欧美日韩一区二区在线| 午夜精品一区二区在线观看| 欧美日韩在线不卡一区| 午夜久久久久| 久久午夜av| 欧美女主播在线| 韩国一区电影| 小黄鸭视频精品导航| 欧美国产在线观看| 亚洲视频狠狠| 亚洲福利视频在线| 国产免费一区二区三区香蕉精| 久久成人这里只有精品| 亚洲欧美日韩在线一区| 在线视频欧美一区| 久久久一区二区| 亚洲香蕉在线观看| 亚洲一区二区三区精品视频 | 久久国产精品黑丝| 亚洲免费在线精品一区| 日韩视频在线免费观看| 亚洲欧洲精品一区二区三区波多野1战4| 国模私拍视频一区| 欧美www在线| 在线视频国产日韩| 国产精品你懂的| 欧美视频日韩| 国产自产精品| 欧美亚洲在线观看| 麻豆成人小视频| 久久精品一区二区三区四区 | 亚洲丶国产丶欧美一区二区三区 | 国产精品日韩精品欧美精品| 久久久久久**毛片大全| 亚洲午夜电影网| 亚洲国产精品一区制服丝袜| 亚洲第一视频网站| 亚洲国内自拍| 亚洲一区二区高清视频| 亚洲欧美在线网| 久久久久欧美精品| 欧美日韩亚洲一区二区三区| 欧美三级网址| 国产性猛交xxxx免费看久久| 亚洲福利视频免费观看| 99国产精品一区| 亚洲一区二区三区视频播放| 国产欧美在线| 午夜精品电影| 一区二区高清在线观看| 欧美丰满高潮xxxx喷水动漫| 黑人巨大精品欧美一区二区| 欧美午夜一区| 国产精品久久久久久久久久久久 | 久久精品一区二区| 国产精品网站视频| 亚洲大片一区二区三区| 亚洲在线播放| 亚洲精品国产视频| 玖玖在线精品| 国产午夜久久| 久久成人免费视频| 性做久久久久久| 国产精品毛片在线| 一本到高清视频免费精品| 欧美**字幕| 蜜桃精品一区二区三区| 久久精品中文字幕一区| 日韩网站在线| 久久精品日产第一区二区| 91久久久久久| 亚洲欧美另类在线观看| 亚洲国产婷婷香蕉久久久久久99 | 欧美日韩在线观看一区二区三区| 亚洲欧美第一页| 久久免费黄色| 亚洲你懂的在线视频| 久久综合影视| 久久久久久亚洲精品杨幂换脸| 欧美精品一区二区在线观看 | 亚洲七七久久综合桃花剧情介绍| 欧美成人免费小视频| 久久综合色天天久久综合图片| 99精品福利视频| 欧美一区二区三区视频| 亚洲欧洲在线免费| 亚洲女ⅴideoshd黑人| 国产一区二区久久精品| 亚洲激情校园春色| 精品成人在线观看| 午夜亚洲性色福利视频| 9色国产精品| 免费亚洲电影在线| 久久精品国产第一区二区三区最新章节 | 欧美极品一区二区三区| 亚洲第一精品电影| 日韩视频在线观看国产| 国产一区二区三区高清| 欧美激情中文不卡| 国产伦精品一区二区三区| 裸体歌舞表演一区二区| 亚洲欧美日韩成人| 欧美激情一区二区三级高清视频| 最新日韩av| 亚洲欧美另类中文字幕| 最新亚洲电影| 久久亚洲美女| 久久色在线观看| 国产精品久久77777| 亚洲成人在线网站| 国产一区二区黄| 一区二区三区av| 日韩视频精品在线观看| 久久人人爽人人| 久久综合成人精品亚洲另类欧美 | 免费精品99久久国产综合精品| 亚洲网站在线播放| 免费视频久久| 欧美在线视频一区二区三区| 欧美日韩国产色综合一二三四| 久久综合九色综合久99| 黄色日韩网站| 久久婷婷影院| 亚洲福利视频一区| 亚洲电影免费| 欧美顶级大胆免费视频| 亚洲高清视频在线观看| 亚洲精品久久久蜜桃| 欧美精品三级在线观看| 日韩亚洲视频| 久久精品动漫| 亚洲精品日韩激情在线电影| 欧美国产日韩一二三区| 一本色道精品久久一区二区三区| 99在线观看免费视频精品观看| 久久久噜噜噜久久狠狠50岁| 国产亚洲精品久久久久久| 免费看成人av| 欧美一级专区| 亚洲日本黄色| 老色鬼久久亚洲一区二区 | 亚洲国产综合在线| 欧美国产视频在线观看| 亚洲无亚洲人成网站77777| 免费亚洲电影在线观看| 欧美一区二区免费观在线| 亚洲精品欧美| 亚洲第一区中文99精品| 国产欧美日本一区视频| 欧美88av| 欧美成年人网站| 久久综合狠狠综合久久综合88| 亚洲欧美在线x视频| 在线亚洲一区观看| 亚洲精品欧美在线| 91久久精品一区二区别| 欧美成人一区二区在线|