青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2054) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復(fù)  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復(fù)  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復(fù)  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復(fù)  更多評論   


只有注冊用戶登錄后才能發(fā)表評論。
網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            国产午夜精品福利| 一区二区三区精品视频| 亚洲电影自拍| 国产一区二区高清| 国产手机视频精品| 狠久久av成人天堂| 亚洲第一页中文字幕| 亚洲人人精品| av成人黄色| 亚洲欧美日韩精品在线| 午夜在线一区| 欧美成人激情在线| 欧美多人爱爱视频网站| 亚洲福利小视频| 免费精品视频| 亚洲麻豆av| 亚洲欧美精品在线| 久久久久久91香蕉国产| 欧美一区日本一区韩国一区| 99精品视频免费观看| 亚洲日本成人在线观看| 9l视频自拍蝌蚪9l视频成人| 亚洲午夜一区二区| 久久久久久久网| 欧美精品免费播放| 国产精品一区一区三区| 狠狠久久亚洲欧美| 99热这里只有精品8| 欧美一区二区三区电影在线观看| 美女免费视频一区| 日韩视频二区| 久久精品女人的天堂av| 欧美日本韩国| 亚洲高清自拍| 久久久久高清| 亚洲小视频在线| 欧美成人四级电影| 国产伦理一区| 99re8这里有精品热视频免费 | 亚洲欧美精品在线| 欧美激情麻豆| 国产一区二区三区在线观看精品 | 欧美 日韩 国产在线 | 亚洲国产精品电影在线观看| 亚洲视频精品在线| 欧美激情影院| 久久久久国产精品一区三寸| 国产精品成人观看视频国产奇米| 亚洲国产精品va在线观看黑人| 午夜影视日本亚洲欧洲精品| 亚洲国产一区二区三区在线播| 欧美一区亚洲一区| 国产精品久久久久三级| 日韩视频一区二区三区在线播放免费观看| 先锋影音久久久| 一区二区日韩| 欧美日韩另类国产亚洲欧美一级| 亚洲国产精品成人精品| 蜜桃精品久久久久久久免费影院| 欧美一区日本一区韩国一区| 国产精品一区二区三区四区五区| 亚洲无毛电影| 亚洲视频中文字幕| 亚洲国产美女精品久久久久∴| 亚洲欧美一区二区精品久久久| 欧美视频一区二区三区| 亚洲最新中文字幕| 亚洲老板91色精品久久| 欧美日韩亚洲网| 亚洲一区视频在线| 中文国产成人精品久久一| 欧美日韩hd| 亚洲在线成人| 性欧美暴力猛交另类hd| 国产一区视频网站| 你懂的亚洲视频| 免费观看欧美在线视频的网站| 亚洲日本免费| 一本一本久久a久久精品牛牛影视| 欧美视频在线观看免费网址| 亚洲男人第一av网站| 亚洲欧美日韩综合aⅴ视频| 国内一区二区在线视频观看| 欧美 日韩 国产精品免费观看| 美女91精品| 亚洲一区二区精品| 性欧美超级视频| 亚洲精品中文字幕有码专区| 一区二区三区欧美亚洲| 国产午夜精品全部视频播放| 欧美黄污视频| 欧美色另类天堂2015| 久久国产黑丝| 欧美激情亚洲一区| 欧美一区二区免费视频| 免费精品视频| 欧美亚洲三级| 欧美不卡高清| 欧美一区二区三区精品| 欧美chengren| 久久久久国产精品一区| 欧美黄色aa电影| 午夜在线精品偷拍| 欧美国产视频在线| 久久九九久精品国产免费直播| 欧美xxxx在线观看| 久久大逼视频| 欧美日韩成人一区二区| 久久网站热最新地址| 欧美日韩在线播放一区| 久久综合电影一区| 国产精品乱码| 亚洲精品乱码久久久久久久久| 国产视频欧美视频| 一本综合久久| 亚洲精品中文字| 麻豆精品传媒视频| 久久天堂成人| 国产嫩草一区二区三区在线观看| 亚洲电影一级黄| 狠狠色噜噜狠狠色综合久| 一本一本久久| 亚洲一区视频| 欧美日韩专区| 亚洲日韩视频| 亚洲看片一区| 欧美精品午夜| 91久久一区二区| 欧美—级在线免费片| 美日韩精品视频免费看| 国产精品亚洲综合| av成人免费在线观看| 亚洲免费观看| 欧美成人免费全部观看天天性色| 久久久噜噜噜久久中文字免| 国产精品日韩精品欧美精品| 日韩亚洲国产欧美| 亚洲精品资源| 欧美激情第六页| 亚洲精品中文字幕有码专区| 日韩视频在线一区二区三区| 免费在线欧美视频| 亚洲国产成人porn| 亚洲欧洲在线一区| 欧美国产日韩一区二区| 最新中文字幕一区二区三区| 亚洲精品在线观看视频| 欧美片在线观看| 一区二区三区高清视频在线观看| 99视频超级精品| 国产精品九九久久久久久久| 中文高清一区| 开元免费观看欧美电视剧网站| 激情一区二区三区| 麻豆久久婷婷| 亚洲美女福利视频网站| 亚洲综合丁香| 国产一区激情| 免费成人高清| 99在线观看免费视频精品观看| 亚洲欧美在线播放| 激情久久久久久久久久久久久久久久| 久久精品天堂| 亚洲人成小说网站色在线| 亚洲一区二区三区精品在线 | 欧美精品二区| 国产精品99久久久久久久久| 久久国产天堂福利天堂| 亚洲激情视频在线播放| 一本大道久久a久久综合婷婷 | 欧美天堂亚洲电影院在线观看 | 欧美与黑人午夜性猛交久久久| 久久久天天操| 日韩写真在线| 国产欧美亚洲一区| 蜜桃伊人久久| 亚洲尤物在线视频观看| 老司机精品视频网站| 一区二区三区四区五区在线| 国产午夜精品久久久| 欧美激情aaaa| 欧美一区二区视频网站| 亚洲精品一区二区在线| 久久综合九九| 亚洲欧美成人网| 亚洲美女在线观看| 国产亚洲午夜| 欧美日韩国产色综合一二三四 | 在线观看视频一区| 国产精品magnet| 噜噜噜91成人网| 午夜精品久久久99热福利| 亚洲欧洲一级| 久久综合中文色婷婷| 亚洲女爱视频在线| 亚洲欧洲日本一区二区三区| 国产亚洲观看| 国产精品女同互慰在线看| 欧美激情综合五月色丁香小说| 欧美资源在线观看|