青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2103) 評論(9)  編輯 收藏 引用

評論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復  更多評論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復  更多評論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復  更多評論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            国产亚洲第一区| **性色生活片久久毛片| 久久精品国产第一区二区三区| 亚洲天堂成人在线视频| 国产精品一区二区在线观看不卡| 亚洲黄色在线视频| 在线亚洲一区二区| 国产亚洲精品久久久久久| 99精品视频网| 国产在线视频欧美| 国产精品精品视频| 欧美另类69精品久久久久9999| 亚洲欧美网站| 亚洲国产人成综合网站| 亚洲字幕一区二区| 久久久久欧美| 欧美一级大片在线免费观看| 欧美成人免费在线视频| 欧美网站在线| 欧美阿v一级看视频| 亚洲资源av| 亚洲一区二区精品在线观看| 久久久久久久久一区二区| 性欧美xxxx大乳国产app| 国产精品久99| 国产综合精品| 亚洲国产精品第一区二区| 欧美理论视频| 亚洲激情亚洲| 亚洲主播在线| 国产欧美精品在线观看| 精品成人一区二区三区| 99www免费人成精品| 亚洲午夜高清视频| 久久亚洲欧美| 午夜激情综合网| 欧美一区二区三区久久精品| 亚洲国产日韩欧美| 亚洲视频一区在线| 亚洲久久一区| 久久一区欧美| 国产精品久久久久久妇女6080| 亚洲欧美日韩精品| 免费在线欧美黄色| 久久久精彩视频| 99综合在线| 久久久久久一区二区| 亚洲免费不卡| 国产一区二区高清视频| 亚洲高清在线播放| 国产精品草草| 久久riav二区三区| 久久久久久电影| 99视频精品在线| 久久久水蜜桃av免费网站| 亚洲欧美日韩网| 精品成人一区二区| 国内精品久久久久国产盗摄免费观看完整版 | 正在播放欧美一区| 99视频精品在线| 久久久噜噜噜久久中文字幕色伊伊 | 欧美日韩一区二区三区免费| 91久久亚洲| 欧美在线观看视频一区二区三区| 亚欧美中日韩视频| 男同欧美伦乱| 国产亚洲欧洲一区高清在线观看| 欧美日韩国产黄| 欧美三日本三级少妇三2023 | 欧美大片免费观看| 亚洲综合999| 久久婷婷综合激情| 欧美一乱一性一交一视频| 韩日精品在线| 亚洲国产成人一区| 久久高清一区| 亚洲欧美一区二区三区久久 | 国产精品a久久久久| 欧美ed2k| 欧美激情精品久久久| 牛夜精品久久久久久久99黑人| 久久婷婷国产综合国色天香| 国产亚洲视频在线| 久久亚洲二区| 亚洲看片免费| 欧美在线www| 亚洲麻豆av| 午夜精品久久久久久久久久久久 | 亚洲国产精品免费| 久久久精品日韩欧美| 在线观看日韩www视频免费 | 猫咪成人在线观看| 欧美日韩国产综合一区二区| 在线日本成人| 欧美日韩国产一级| 欧美午夜电影在线| 亚洲一区二区三区欧美| 午夜免费电影一区在线观看| 欧美成人午夜剧场免费观看| 欧美中文字幕在线视频| 亚洲国内精品| 免费不卡视频| 欧美性开放视频| 免费不卡在线观看| 亚洲一区二区久久| 欧美成人免费在线视频| 久久久久综合| 欧美亚洲自偷自偷| 国产性天天综合网| 美女亚洲精品| 欧美体内谢she精2性欧美| 亚洲激情电影在线| 欧美jizzhd精品欧美巨大免费| 亚洲一区二区在线| 欧美日韩成人在线观看| 亚洲一区视频| 欧美韩国日本一区| 欧美一级在线视频| 免费一区视频| 亚洲精品在线免费| 国产精品久久久一区麻豆最新章节| 亚洲视频电影在线| 国产精品毛片高清在线完整版| 99v久久综合狠狠综合久久| 久久综合色播五月| 国产精品高清网站| 久久夜色精品| 久久综合色8888| 欧美日韩成人综合天天影院| 久热综合在线亚洲精品| 99视频精品在线| 久久精品1区| 久久久精品视频成人| 香蕉久久久久久久av网站| 久久国产精品网站| 久久精品99国产精品日本| 欧美精品激情在线| 欧美日韩视频在线观看一区二区三区| 午夜精品在线| 香蕉久久一区二区不卡无毒影院| 欧美激情综合在线| 欧美中文在线免费| 亚洲激情自拍| 亚洲无人区一区| 欧美高清成人| 国产精品久久久久99| 国产综合婷婷| 欧美网站在线| 在线观看亚洲a| 亚洲欧美一区二区原创| 久久久久久久999| 日韩视频在线免费| 亚洲在线视频观看| 欧美在线一二三区| 国产日韩成人精品| 欧美一区二区大片| 亚洲小视频在线观看| 午夜精品国产| 久久先锋资源| 一区二区三区高清在线| 欧美成人精品1314www| 亚洲第一区在线观看| 亚洲美女电影在线| 欧美国产日韩二区| 欧美午夜精品久久久久久超碰| 久久中文久久字幕| 国产精品扒开腿爽爽爽视频| 久久夜色精品亚洲噜噜国产mv| 久久精品国产一区二区三| 亚洲福利国产| 欧美一区二粉嫩精品国产一线天| 欧美在线日韩| 国产精品swag| 亚洲制服av| 国产亚洲精品美女| 亚洲第一免费播放区| 国产精品日本欧美一区二区三区| 欧美精品免费看| 久久婷婷麻豆| 亚洲国产一区二区三区青草影视| 欧美黄色成人网| 欧美日韩精品二区| 久久久精品日韩欧美| 久热re这里精品视频在线6| 蜜臀久久99精品久久久久久9| 久久综合影视| 欧美午夜不卡影院在线观看完整版免费 | 亚洲区欧美区| 美女精品网站| 亚洲高清三级视频| 亚洲电影在线免费观看| 久久精品av麻豆的观看方式| 久久久精品国产一区二区三区 | 免费久久99精品国产自在现线 | 欧美一二三视频| 久久九九热免费视频| 亚洲一区二区三区在线观看视频| 老司机午夜精品视频在线观看| 久久噜噜噜精品国产亚洲综合 | 卡通动漫国产精品|