青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2008-08-25 15:57 zmj 閱讀(2053) 評(píng)論(9)  編輯 收藏 引用

評(píng)論

# re: Point in triangle test 2012-03-12 19:19 Mccullough32Freda

No matter what kind of internet business you have, little or great, you will need your site to have got a good traffic. You will get that using the <a href="http://cheap-link-building.com/submit_to_directories.htm">submission directory</a> service with optimization options.   回復(fù)  更多評(píng)論   

# re: Point in triangle test 2013-04-13 17:45 OvernightEssay.com testimonials

Have a desire to know more about paper writing services? Hunting for trusty writing centre to obtain aid from? SpecialEssays rewiew will give you a listing of agencies from which pupils can choose the most qualified ones to buy term paper from.  回復(fù)  更多評(píng)論   

# re: Point in triangle test 2013-04-18 03:11 resume writing services

Are you hunting which service to choose for buying resume or where to receive sample of cover letter and help with resume writing? Or you simply want to buy resumes from best resume writers? Only contact Resume company "exclusiveresume.com".  回復(fù)  更多評(píng)論   

# re: Point in triangle test 2013-04-25 20:13 Resumesexpert.com

Need to write a resume? Do not know where to buy resume paper? View this Resumes Expert company resumesexpert.com where you can find professional resume writers review. Our expert resume writers will reassure you that buying resume can bring job seekers real success!  回復(fù)  更多評(píng)論   


只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            午夜精品福利一区二区蜜股av| 亚洲免费大片| 久久久亚洲国产美女国产盗摄| 一区二区日韩| 99视频精品全部免费在线| 日韩午夜精品视频| 亚洲精品韩国| 欧美www在线| 西西人体一区二区| 亚洲欧洲中文日韩久久av乱码| 亚洲激情成人网| 亚洲日本久久| 亚洲午夜视频在线观看| 午夜精品短视频| 久久精品国产91精品亚洲| 久久精品91久久久久久再现| 裸体丰满少妇做受久久99精品 | 亚洲尤物在线| 久久精品一区四区| 欧美看片网站| 黄色在线成人| 亚洲视频第一页| 久久久伊人欧美| 亚洲人成人77777线观看| 亚洲欧美日韩国产综合| 久久久午夜视频| 国产精品免费看| 一区二区在线观看视频在线观看| 99re亚洲国产精品| 久久综合久久综合久久| 亚洲免费av片| 久久久一区二区| 国产精品亚洲视频| 99精品国产福利在线观看免费 | 亚洲精品一区在线观看| 亚洲欧美精品伊人久久| 欧美肥婆在线| 亚洲欧美日韩天堂| 欧美日韩在线高清| 欧美国产日韩a欧美在线观看| 国产精品一区二区久久久| 91久久久久久| 牛牛国产精品| 久久久久欧美| 国产亚洲欧美另类中文| 99国内精品久久| 亚洲国产一区视频| 久久一本综合频道| 激情懂色av一区av二区av| 亚洲一区欧美| 亚洲视频专区在线| 欧美日韩一区二区免费在线观看| 亚洲激情啪啪| 欧美99在线视频观看| 欧美一区二区三区日韩视频| 国产精品一卡二卡| 性8sex亚洲区入口| 亚洲影视中文字幕| 国产精品一区二区视频| 小嫩嫩精品导航| 欧美一区二区三区免费视| 一区二区三区成人| 午夜精品久久久久久久白皮肤| 亚洲欧美日韩国产综合| 一区二区冒白浆视频| 欧美日韩免费高清| 一区二区三区免费观看| 日韩一二在线观看| 欧美午夜精彩| 午夜一级久久| 欧美亚洲免费在线| 在线欧美日韩精品| 亚洲国产精品成人久久综合一区| 老牛嫩草一区二区三区日本| 亚洲国产导航| 欧美激情导航| 久久精品夜色噜噜亚洲aⅴ| 国产精品成人免费视频 | 模特精品裸拍一区| 久久成人18免费观看| 激情久久久久久久| 欧美黄色aaaa| 欧美午夜欧美| 久久久噜噜噜久久狠狠50岁| 久久精品色图| 中日韩高清电影网| 午夜精品久久久久影视| 亚洲国产清纯| 亚洲网站在线播放| 精品91在线| 亚洲美女视频在线观看| 国产一区二区三区在线免费观看| 亚洲福利视频专区| 国产精品久久久久一区二区| 久久亚洲综合网| 欧美午夜www高清视频| 这里只有精品电影| 国产日韩av高清| 欧美一级午夜免费电影| 一区二区三区日韩| 欧美亚洲一区| 日韩视频不卡中文| 亚洲欧美精品在线观看| 亚洲国产精品99久久久久久久久| 日韩一级大片在线| 欲色影视综合吧| 一区二区三区视频在线观看| 韩国一区二区三区美女美女秀| 亚洲精选大片| 亚洲国产精品视频| 性8sex亚洲区入口| 亚洲午夜一区二区三区| 蜜桃av综合| 久久午夜电影网| 国产精品美女久久久久久久| 亚洲国产精品va在线观看黑人| 国产伦精品一区二区三区高清版| 亚洲国内在线| 在线观看成人小视频| 亚洲在线视频一区| 女同一区二区| 免费观看30秒视频久久| 国产日韩精品视频一区| 亚洲图片在线| 亚洲男女毛片无遮挡| 欧美日韩精品欧美日韩精品| 亚洲成人在线免费| 欧美久久久久久久| 欧美+亚洲+精品+三区| 国产亚洲人成网站在线观看| 亚洲一区二区三区免费观看 | 亚洲主播在线播放| 亚洲欧美清纯在线制服| 欧美视频专区一二在线观看| 亚洲精品免费一区二区三区| 亚洲国产欧美日韩精品| 老色鬼久久亚洲一区二区| 嫩草国产精品入口| 亚洲国产一区二区a毛片| 老牛影视一区二区三区| 亚洲国产成人午夜在线一区| 亚洲福利视频三区| 欧美成人a∨高清免费观看| 亚洲成人在线免费| 亚洲黄色大片| 欧美大片一区二区三区| 亚洲区免费影片| 亚洲一级黄色片| 国产精品一区久久久久| 欧美一区二视频| 欧美电影电视剧在线观看| 亚洲精品欧美一区二区三区| 欧美日韩国产综合视频在线观看| 夜夜嗨av一区二区三区免费区| 亚洲一区在线免费| 国产午夜精品久久久久久久| 久久久99免费视频| 91久久中文| 欧美一区免费视频| 亚洲高清一区二| 欧美日韩一区二区三区视频 | 欧美精品一区二区蜜臀亚洲 | 欧美成人一区二区在线| 99re6这里只有精品视频在线观看| 亚洲欧美日韩精品久久奇米色影视| 国产区在线观看成人精品| 久久久久久久成人| 亚洲美女色禁图| 久久嫩草精品久久久精品一| 日韩视频一区二区三区在线播放免费观看 | 鲁鲁狠狠狠7777一区二区| 亚洲黄色成人| 欧美有码在线视频| 最新精品在线| 国产精品午夜久久| 欧美aa在线视频| 亚洲欧美日韩在线不卡| 欧美国产日韩免费| 欧美专区亚洲专区| 99在线观看免费视频精品观看| 国产午夜久久| 欧美日韩国产一区二区三区| 欧美一区二区三区免费在线看| 亚洲美女视频网| 欧美激情一区二区三区在线视频 | 午夜视频在线观看一区二区三区| 一区二区三区在线高清| 欧美三级网址| 欧美顶级大胆免费视频| 西瓜成人精品人成网站| 亚洲人体1000| 欧美成人精精品一区二区频| 欧美一区在线看| 亚洲香蕉网站| 亚洲九九爱视频| 亚洲国产精品一区| 好吊妞**欧美| 国产综合一区二区| 国产欧美日韩在线播放| 欧美午夜免费影院|