青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

LINK: http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2009-12-01 16:58 zmj 閱讀(1421) 評論(0)  編輯 收藏 引用

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            一本久道综合久久精品| 一区二区三区国产在线| 欧美激情成人在线| 欧美韩日亚洲| 欧美精品在线视频| 欧美亚一区二区| 国产精品资源在线观看| 国产日韩欧美制服另类| 国产在线视频欧美| 亚洲国产欧美日韩精品| 99国产精品久久| 欧美一区二区大片| 免费h精品视频在线播放| 欧美国产三区| 久久综合一区| 亚洲五月婷婷| 久久国产福利国产秒拍| 美女999久久久精品视频| 欧美特黄视频| 国产一区二区精品久久| 一区二区三区不卡视频在线观看| 在线亚洲欧美专区二区| 久久三级福利| 99在线热播精品免费| 欧美一区二视频在线免费观看| 久久亚洲视频| 国产免费成人在线视频| 一区二区三区四区国产| 久久一二三国产| 亚洲少妇在线| 欧美精品久久久久久| 国产专区精品视频| 亚洲一区在线看| 亚洲欧洲日产国产综合网| 亚洲一区二区三区精品在线| 欧美成人精品一区二区三区| 国内精品久久久| 欧美在线视频免费观看| 亚洲最新中文字幕| 欧美激情综合| 亚洲精品欧美日韩| 欧美国产视频在线观看| 久久久久国产一区二区| 国产欧美在线看| 亚洲欧美日韩中文播放| 99国产一区| 欧美日韩直播| 亚洲午夜精品一区二区三区他趣| 亚洲国产高清一区| 欧美成人精品福利| 亚洲高清在线观看一区| 蜜桃久久av| 麻豆亚洲精品| 亚洲激情在线观看| 欧美成人福利视频| 久久免费午夜影院| 影音先锋久久精品| 免费成人毛片| 欧美91大片| 99日韩精品| 一本综合精品| 国产欧美日韩免费| 久久久蜜臀国产一区二区| 久久成人免费视频| 亚洲高清在线观看| 亚洲国产欧美日韩另类综合| 欧美成人午夜| 亚洲校园激情| 欧美一区二区三区视频在线观看 | 好吊视频一区二区三区四区| 亚洲国产成人av好男人在线观看| 久久中文久久字幕| 久久亚洲精品伦理| 亚洲日本中文字幕区| 91久久香蕉国产日韩欧美9色| 欧美绝品在线观看成人午夜影视| 亚洲天堂成人在线观看| 亚洲一区二区毛片| 国产日韩三区| 亚洲大胆av| 国产精品久久久久久亚洲调教| 亚欧成人在线| 久久免费午夜影院| 日韩视频精品在线| 亚洲网站在线观看| 黄色在线一区| 99re视频这里只有精品| 国产日韩av高清| 亚洲第一区中文99精品| 国产精品一二一区| 你懂的成人av| 欧美视频中文在线看| 久久成人资源| 欧美日韩福利在线观看| 久久aⅴ乱码一区二区三区| 久久久久看片| 亚洲一区二区在线免费观看视频 | 免费精品视频| 亚洲主播在线| 久热精品在线| 先锋影音国产一区| 欧美国产大片| 久久在线视频| 国产精品v日韩精品v欧美精品网站| 久久av一区| 欧美揉bbbbb揉bbbbb| 欧美大片专区| 国产一区二区成人| 亚洲天堂av综合网| 一区二区三区导航| 狂野欧美激情性xxxx欧美| 欧美一级在线视频| 欧美日韩免费观看一区=区三区| 久久综合色影院| 国产乱码精品一区二区三区av| 91久久夜色精品国产网站| 黄色av成人| 欧美一级大片在线观看| 亚洲免费在线视频| 欧美日韩国产精品专区 | 欧美一区成人| 亚洲欧美另类在线| 欧美日韩国产91| 亚洲福利视频二区| 黄色精品网站| 新67194成人永久网站| 午夜日韩av| 国产精品黄页免费高清在线观看| 亚洲欧洲精品一区| 最新高清无码专区| 久久综合综合久久综合| 久久嫩草精品久久久久| 欧美国产日韩一区二区三区| 久久麻豆一区二区| 国产伦理精品不卡| 亚洲视频一二区| 亚洲素人在线| 国产精品高清在线观看| 一区二区三区产品免费精品久久75| 日韩香蕉视频| 欧美日韩中文字幕在线| 一区二区三区高清| 午夜精品999| 国产日韩欧美a| 欧美一区视频在线| 久久午夜精品一区二区| 国产在线精品自拍| 久久夜色精品国产亚洲aⅴ| 欧美高清视频在线| 日韩视频中午一区| 国产精品白丝jk黑袜喷水| 亚洲四色影视在线观看| 久久精品国产亚洲精品| 黄色在线一区| 欧美国产视频在线| 在线亚洲高清视频| 久久夜色精品国产噜噜av| 亚洲精品1234| 国产精品国产三级国产普通话99| 性久久久久久久| 亚洲风情亚aⅴ在线发布| 这里只有精品丝袜| 国产亚洲激情在线| 欧美高清影院| 欧美一级电影久久| 亚洲黄页一区| 久久久精品一区| 日韩视频一区二区在线观看| 国产精品视频不卡| 蜜臀av性久久久久蜜臀aⅴ| 99riav1国产精品视频| 久久综合九色欧美综合狠狠| 夜夜爽www精品| 国内精品伊人久久久久av影院 | 亚洲午夜激情| 欧美成人a∨高清免费观看| 一二三区精品福利视频| 国产小视频国产精品| 欧美激情bt| 久久久久久高潮国产精品视| 99热免费精品在线观看| 鲁大师成人一区二区三区| 亚洲一区二区三区中文字幕| 在线观看成人av电影| 国产精品视区| 欧美区亚洲区| 另类酷文…触手系列精品集v1小说| 一区二区三区成人精品| 亚洲福利视频专区| 久久精品系列| 亚洲欧美日韩国产一区二区| 亚洲精品一区二区在线观看| 国产综合欧美| 国产精品亚发布| 欧美日韩三级视频| 快播亚洲色图| 久久精品视频免费播放| 亚洲一区二区伦理| 欧美一区二区福利在线| 亚洲视频综合在线|