• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Maths - Angle between vectors

            LINK: http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm

            How do we calculate the angle between two vectors?

            For 2D Vectors

            This is relatively simple because there is only one degree of freedom for 2D rotations. If v1 and v2 are normalised so that |v1|=|v2|=1, then,

            angle = acos(v1•v2)

            where:

            • • = 'dot' product (see box on right of page).
            • acos = arc cos = inverse of cosine function see trigonometry page.
            • |v1|= magnitude of v1.

            The only problem is, this won't give all possible values between 0° and 360°, or -180° and +180°. In other words, it won't tell us if v1 is ahead or behind v2, to go from v1 to v2 is the opposite direction from v2 to v1.

            In most math libraries acos will usually return a value between 0 and PI (in radians) which is 0° and 180°.

            If we want a + or - value to indicate which vector is ahead, then we probably need to use the atan2 function (as explained on this page). using:

            angle of 2 relative to 1= atan2(v2.y,v2.x) - atan2(v1.y,v1.x)

            For 3D Vectors

            Axis Angle Result

            This is easiest to calculate using axis-angle representation because:

            • the angle is given by acos of the dot product of the two (normalised) vectors: v1•v2 = |v1||v2| cos(angle)
            • the axis is given by the cross product of the two vectors, the length of this axis is given by |v1 x v2| = |v1||v2| sin(angle).

            as explained here

            this is taken from this discussion.

            So, if v1 and v2 are normalised so that |v1|=|v2|=1, then,

            angle = acos(v1•v2)

            axis = norm(v1 x v2)

            If the vectors are parallel (angle = 0 or 180 degrees) then the length of v1 x v2 will be zero because sin(0)=sin(180)=0. In the zero case the axis does not matter and can be anything because there is no rotation round it. In the 180 degree case the axis can be anything at 90 degrees to the vectors so there is a whole range of possible axies.

            angle (degrees) sin(angle) cos(angle) v1•v2 v1 x v2
            0 0 1 1 0,0,0
            90 1 0 0 unit len
            180 0 -1 -1 0,0,0
            270 -1 0 0 unit len

            Quaternion Result

            One approach might be to define a quaternion which, when multiplied by a vector, rotates it:

            p2=q * p1

            This almost works as explained on this page.

            However, to rotate a vector, we must use this formula:

            p2=q * p1 * conj(q)

            where:

            • p2 = is a vector representing a point after being rotated
            • q = is a quaternion representing a rotation.
            • p1= is a vector representing a point before being rotated

            This is a bit messy to solve for q, I am therefore grateful to minorlogic for the following approach which converts the axis angle result to a quaternion:

            The axis angle can be converted to a quaternion as follows, let x,y,z,w be elements of quaternion, these can be expressed in terms of axis angle as explained here.

            angle = arcos(v1•v2/ |v1||v2|)
            axis = norm(v1 x v2)
            s = sin(angle/2)
            x = axis.x *s
            y = axis.y *s
            z = axis.z *s
            w = cos(angle/2)

            We can use this half angle trig formula on this page: sin(angle/2) = 0.5 sin(angle) / cos(angle/2)

            so substituting in quaternion formula gives:
            s = 0.5 sin(angle) / cos(angle/2)
            x = norm(v1 x v2).x *s
            y = norm(v1 x v2).y *s
            z = norm(v1 x v2).z *s
            w = cos(angle/2)

            multiply x,y,z and w by 2* cos(angle/2) (this will de normalise the quaternion but we can always normalise later)

            x = norm(v1 x v2).x * sin(angle)
            y = norm(v1 x v2).y * sin(angle)
            z = norm(v1 x v2).z * sin(angle)
            w = 2 * cos(angle/2) * cos(angle/2)

            now substitute half angle trig formula on this page: cos(angle/2) = sqrt(0.5*(1 + cos (angle)))

            x = norm(v1 x v2).x * sin(angle)
            y = norm(v1 x v2).y * sin(angle)
            z = norm(v1 x v2).z * sin(angle)
            w = 1 + cos (angle)

            because |v1 x v2| = |v1||v2| sin(angle) we can normalise (v1 x v2) by dividing it with sin(angle),

            also apply v1•v2 = |v1||v2| cos(angle)so,

            x = (v1 x v2).x / |v1||v2|
            y = (v1 x v2).y/ |v1||v2|
            z = (v1 x v2).z/ |v1||v2|
            w = 1 + v1•v2 / |v1||v2|

            If v1 and v2 are already normalised then |v1||v2|=1 so,

            x = (v1 x v2).x
            y = (v1 x v2).y
            z = (v1 x v2).z
            w = 1 + v1•v2

            If v1 and v2 are not already normalised then multiply by |v1||v2| gives:

            x = (v1 x v2).x
            y = (v1 x v2).y
            z = (v1 x v2).z
            w = |v1||v2| + v1•v2

            Matrix Result

            Using the quaternion to matrix conversion here we get:

            1 - 2*qy2 - 2*qz2 2*qx*qy - 2*qz*qw 2*qx*qz + 2*qy*qw
            2*qx*qy + 2*qz*qw 1 - 2*qx2 - 2*qz2 2*qy*qz - 2*qx*qw
            2*qx*qz - 2*qy*qw 2*qy*qz + 2*qx*qw 1 - 2*qx2 - 2*qy2

            so substituting the quaternion results above into the matrix we get:

            1 - 2*(v1 x v2).y2 - 2*(v1 x v2).z2 2*(v1 x v2).x*(v1 x v2).y - 2*(v1 x v2).z*(1 + v1•v2) 2*(v1 x v2).x*(v1 x v2).z + 2*(v1 x v2).y*(1 + v1•v2)
            2*(v1 x v2).x*(v1 x v2).y + 2*(v1 x v2).z*(1 + v1•v2) 1 - 2*(v1 x v2).x2 - 2*(v1 x v2).z2 2*(v1 x v2).y*(v1 x v2).z - 2*(v1 x v2).x*(1 + v1•v2)
            2*(v1 x v2).x*(v1 x v2).z - 2*(v1 x v2).y*(1 + v1•v2) 2*(v1 x v2).y*(v1 x v2).z + 2*(v1 x v2).x*(1 + v1•v2) 1 - 2*(v1 x v2).x2 - 2*(v1 x v2).y2

            Substituting the following expansions:

            (v1 x v2).x = v1.y * v2.z - v2.y * v1.z
            (v1 x v2).y = v1.z * v2.x - v2.z * v1.x
            (v1 x v2).z = v1.x * v2.y - v2.x * v1.y
            (v1 x v2).x2 = v1.y * v2.z * v1.y * v2.z + v2.y * v1.z * v2.y * v1.z - 2 * v2.y * v1.z * v1.y * v2.z
            (v1 x v2).y2 = v1.z * v2.x * v1.z * v2.x + v2.z * v1.x * v2.z * v1.x - 2* v2.z * v1.x * v1.z * v2.x
            (v1 x v2).z2 = v1.x * v2.y * v1.x * v2.y +v2.x * v1.y * v2.x * v1.y - 2 * v2.x * v1.y * v1.x * v2.y
            v1•v2 = v1.x * v2.x + v1.y * v2.y + v1.z * v2.z

            This is getting far too complicated ! can anyone help me simplify this?

            Thank you again to minorlogic who gave me the following solution:

            Hi !
            and i think can help in matrix version.

            you can use :
            http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm

            And will get some thing :

            matrix33 RotAngonst vector3& from, const vector3& to )
            {
            from.norm();
            to.norm();

            vector3 vs = cross(from, to); // axis multiplied by sin

            vector3 v(vs);
            v.norm(); // axis of rotation
            float ca = dot(from, to) ; // cos angle

            vector3 vt(v*(1.0f - ca));

            matrix33 rotM;
            rotM.M11 = vt.x * v.x + ca;
            rotM.M22 = vt.y * v.y + ca;
            rotM.M33 = vt.z * v.z + ca;

            vt.x *= v.y;
            vt.z *= v.x;
            vt.y *= v.z;

            rotM.M12 = vt.x - vs.z;
            rotM.M13 = vt.z + vs.y;
            rotM.M21 = vt.x + vs.z;
            rotM.M23 = vt.y - vs.x;
            rotM.M31 = vt.z - vs.y;
            rotM.M32 = vt.y + vs.x;
            return rotM;
            }

            Code

            axis-angle version
            sfrotation angleBetween(sfvec3f v1,sfvec3f v2) {
            float angle;
            // turn vectors into unit vectors
            n1 = v1.norm();
            n2 = v2.norm();
            angle = Math.acos( sfvec3f.dot(n1,n2) );
            // if no noticable rotation is available return zero rotation
            // this way we avoid Cross product artifacts
            if( Math.abs(angle) < 0.0001 ) return new sfrotation( 0, 0, 1, 0 );
            // in this case there are 2 lines on the same axis
            if(Math.abs(angle)-Math.pi) < 0.001){
            n1 = n1.Rotx( 0.5f );
            // there are an infinite number of normals
            // in this case. Anyone of these normals will be
            // a valid rotation (180 degrees). so I rotate the curr axis by 0.5 radians this way we get one of these normals
            }
            sfvec3f axis = n1;
            axis.cross(n2);
            return new sfrotation(axis.x,axis.y,axis.z,angle);
            }
            
            quaternion version
            /** note v1 and v2 dont have to be nomalised, thanks to minorlogic for telling me about this:
            * http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/minorlogic.htm
            */
            sfquat angleBetween(sfvec3f v1,sfvec3f v2) {
            float d = sfvec3f.dot(v1,v2);
            sfvec3f axis = v1;
            axis.cross(v2);
            float qw = (float)Math.sqrt(v1.len_squared()*v2.len_squared()) + d;
            if (qw < 0.0001) { // vectors are 180 degrees apart
            return (new sfquat(0,-v1.z,v1.y,v1.x)).norm;
            }
            sfquat q= new sfquat(qw,axis.x,axis.y,axis.z);
            return q.norm();
            }
            

            matrix version

            sfmatrix angleBetween(sfvec3f v1,sfvec3f v2) {
            // turn vectors into unit vectors
            n1 = v1.norm();
            n2 = v2.norm(); 	sfvec3f vs = new sfvec3f(n1);
            vs.cross(n2); // axis multiplied by sin	sfvec3f v = new sfvec3f(vs);
            v = v.norm(); // axis of rotation
            float ca = dot(n1, n2) ; // cos angle	sfvec3f vt = new sfvec3f(v);	vt.scale((1.0f - ca);	sfmatrix rotM = new sfmatrix();
            rotM.m11 = vt.x * v.x + ca;
            rotM.m22 = vt.y * v.y + ca;
            rotM.m33 = vt.z * v.z + ca;	vt.x *= v.y;
            vt.z *= v.x;
            vt.y *= v.z;	rotM.m12 = vt.x - vs.z;
            rotM.m13 = vt.z + vs.y;
            rotM.m21 = vt.x + vs.z;
            rotM.m23 = vt.y - vs.x;
            rotM.m31 = vt.z - vs.y;
            rotM.m32 = vt.y + vs.x;
            return rotM;
            }

            see also code from minorlogic

            posted on 2009-05-31 13:50 zmj 閱讀(1583) 評論(0)  編輯 收藏 引用

            99热成人精品免费久久| 久久激情亚洲精品无码?V| 欧洲国产伦久久久久久久 | 国色天香久久久久久久小说 | 77777亚洲午夜久久多喷| 久久丫精品国产亚洲av| 国产一区二区精品久久| 激情久久久久久久久久| 久久久久久午夜精品| 精品久久久久久久久中文字幕| 久久国产精品无码网站| 中文字幕久久久久人妻| 国产精品九九久久免费视频 | 亚洲精品美女久久777777| 欧美777精品久久久久网| 97精品伊人久久大香线蕉| 久久久久亚洲精品天堂| 亚洲国产日韩欧美久久| 久久免费视频观看| 中文字幕久久精品无码| 精品久久久久中文字| 国产亚洲美女精品久久久久狼| 久久久这里只有精品加勒比| 久久er国产精品免费观看2| 中文国产成人精品久久不卡| 精品人妻伦九区久久AAA片69 | 亚洲精品无码成人片久久| 人人狠狠综合久久亚洲| 91精品婷婷国产综合久久| 2022年国产精品久久久久| 波多野结衣AV无码久久一区| 久久亚洲国产最新网站| 久久综合伊人77777麻豆| 久久久久香蕉视频| 久久国产精品免费一区| 久久精品这里只有精99品| 久久综合九色综合久99| 久久婷婷综合中文字幕| 久久夜色精品国产网站| 精品久久久久久成人AV| 精品久久久久久国产91|