• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Polygon Area

            LINK:http://mathworld.wolfram.com/PolygonArea.html
            Polygon Area
            DOWNLOAD Mathematica Notebook
            PolygonArea

            The (signed) area of a planar non-self-intersecting polygon with vertices (x_1,y_1), ..., (x_n,y_n) is

             A=1/2(|x_1 x_2; y_1 y_2|+|x_2 x_3; y_2 y_3|+...+|x_n x_1; y_n y_1|),

            where |M| denotes a determinant. This can be written

             A=1/2(x_1y_2-x_2y_1+x_2y_3-x_3y_2+...+x_(n-1)y_n-x_ny_(n-1)+x_ny_1-x_1y_n),

            where the signs can be found from the diagram above.

            Note that the area of a convex polygon is defined to be positive if the points are arranged in a counterclockwise order, and negative if they are in clockwise order (Beyer 1987).

            SEE ALSO: Area, Convex Polygon, Polygon, Triangle Area

            REFERENCES:

            Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 123-124, 1987.




            CITE THIS AS:

            Weisstein, Eric W. "Polygon Area." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PolygonArea.html

            posted on 2009-03-09 09:14 zmj 閱讀(883) 評論(0)  編輯 收藏 引用

            2021久久精品免费观看| 久久国产精品一区二区| 久久精品国产只有精品2020| 国产A三级久久精品| 四虎影视久久久免费观看| 日本久久久久久久久久| 亚洲成av人片不卡无码久久| 久久久青草青青亚洲国产免观| 国内精品久久久久久野外| 久久青草国产手机看片福利盒子| 久久综合欧美成人| 久久AⅤ人妻少妇嫩草影院| 色天使久久综合网天天| 久久只这里是精品66| 色综合久久久久久久久五月| 久久久久人妻精品一区二区三区 | 丁香久久婷婷国产午夜视频| 久久精品国产精品亚洲精品| 99精品伊人久久久大香线蕉| 久久99精品久久久久久齐齐| 亚洲国产精品成人久久蜜臀| 久久WWW免费人成一看片| 国产精品美女久久久m| 国产福利电影一区二区三区久久老子无码午夜伦不 | 精品无码久久久久久久动漫| 久久强奷乱码老熟女| 久久婷婷五月综合成人D啪| 久久婷婷激情综合色综合俺也去| 久久精品国产99国产电影网| 久久综合成人网| 国产精品久久久久无码av| 久久影视国产亚洲| 精品久久久久久久| 色妞色综合久久夜夜| 欧美亚洲另类久久综合| 久久人妻AV中文字幕| AA级片免费看视频久久| 国产亚洲精品久久久久秋霞| 国产精品免费久久| 久久久久国产精品熟女影院| 欧美激情精品久久久久久久九九九|