• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.3 A Game

            A Game

            IOI'96 - Day 1

            Consider the following two-player game played with a sequence of N positive integers (2 <= N <= 100) laid onto a game board. Player 1 starts the game. The players move alternately by selecting a number from either the left or the right end of the sequence. That number is then deleted from the board, and its value is added to the score of the player who selected it. A player wins if his sum is greater than his opponents.

            Write a program that implements the optimal strategy. The optimal strategy yields maximum points when playing against the "best possible" opponent. Your program must further implement an optimal strategy for player 2.

            PROGRAM NAME: game1

            INPUT FORMAT

            Line 1: N, the size of the board
            Line 2-etc: N integers in the range (1..200) that are the contents of the game board, from left to right

            SAMPLE INPUT (file game1.in)

            6
            4 7 2 9
            5 2
            

            OUTPUT FORMAT

            Two space-separated integers on a line: the score of Player 1 followed by the score of Player 2.

            SAMPLE OUTPUT (file game1.out)

            18 11
            

            Analysis

            A typical game theory problem. The problem aims to find a solution for two players, which impletement optimal strategy for player 2. Considering the fact of only two operations for each step, making dynamic programming is helpful for these. F[i][j] is defined as the maximum sum for player 1 when choosing numbers among range [i,j], and s[i][j] stands for the sum of numbers among ith number and jth number. After all, new an array num[i] to store numbers.
            Then, considering the two activities in choosing, which can only be happened for numbers of the first and the last one. Since the description needs an optimal strategy for player two, it is reasonable for maximum the result.
            After all, the function can be presented below: f[i][j]=max{num[i]+sum[i+1][j]-f[i+1][j],num[j]+sum[i][j-1]-f[i][j-1]}, 1<=i,j<=n.
            Initialization: f[i][i]=num[i], 1<=i<=n.
            Tips in calculating: just only two variables: x,k. "j" is better fixed by x+k for f[i][j] is fully determined by f[i+1][j] and f[i][j-1], which are turing into f[x+1][x+k] and f[x][x+k-1]. It is obvious to making the first "for loop" of k and the next one is "x". Otherwise, i and j are too flexible to make loops.

            Code

            /*
            ID:braytay1
            PROG:game1
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <fstream>
            using namespace std;

            int n;
            int f[100][100],num[100],sum,s[100][100];

            int max(int a,int b){
                
            return a>b?a:b;
            }


            int main(){
                ifstream fin(
            "game1.in");
                ofstream fout(
            "game1.out");
                fin
            >>n;
                
            for(int i=0;i<n;i++) fin>>num[i];
                memset(f,
            0,sizeof f);
                memset(s,
            0,sizeof s);
                
            for(int i=0;i<n;i++) f[i][i]=num[i];
                
            for(int i=0;i<n;i++)
                    
            for(int j=0;j<n;j++)
                        
            for(int k=i;k<=j;k++)
                            s[i][j]
            +=num[k];
                
            for(int k=1;k<n;k++)
                    
            for(int x=0;x+k<n;x++)        
                        f[x][x
            +k]=max(num[x]+s[x+1][x+k]-f[x+1][x+k],num[x+k]+s[x][x+k-1]-f[x][x+k-1]);
                fout
            <<f[0][n-1]<<" "<<s[0][n-1]-f[0][n-1]<<endl;
                
            return 0;
            }


             

            posted on 2008-09-01 16:36 幻浪天空領主 閱讀(237) 評論(0)  編輯 收藏 引用 所屬分類: USACO

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久国产精品久久国产精品| 亚洲国产成人久久综合一 | 久久综合精品国产二区无码| 亚洲人成网亚洲欧洲无码久久| 久久久久人妻一区精品色 | 97久久精品人人澡人人爽| 亚洲国产精品无码久久青草| 99精品久久久久中文字幕| 无码乱码观看精品久久| 精品免费tv久久久久久久| 久久久久久久97| 国产精品成人久久久久久久| 麻豆成人久久精品二区三区免费| 久久精品成人免费观看97| AV无码久久久久不卡蜜桃| 久久综合精品国产一区二区三区 | 奇米影视7777久久精品人人爽| 国产精品久久久久AV福利动漫| 久久中文字幕人妻丝袜| 久久久久18| 国产精品成人无码久久久久久| 久久国产精品成人影院| 日产精品99久久久久久| 狠狠色丁香久久婷婷综合蜜芽五月| 一本大道加勒比久久综合| 国产精品无码久久综合| 国产成人精品白浆久久69| 7777久久久国产精品消防器材| 欧美伊人久久大香线蕉综合69| 久久99精品久久久久久9蜜桃 | 久久99亚洲网美利坚合众国| 欧美亚洲国产精品久久| 久久综合鬼色88久久精品综合自在自线噜噜 | 国产精品美女久久久久| 久久精品亚洲中文字幕无码麻豆| 亚洲国产精品18久久久久久| 久久偷看各类wc女厕嘘嘘| 国产精品久久久久国产A级| 99久久人妻无码精品系列| 久久成人精品视频| 国产精品九九久久免费视频 |