• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.3 A Game

            A Game

            IOI'96 - Day 1

            Consider the following two-player game played with a sequence of N positive integers (2 <= N <= 100) laid onto a game board. Player 1 starts the game. The players move alternately by selecting a number from either the left or the right end of the sequence. That number is then deleted from the board, and its value is added to the score of the player who selected it. A player wins if his sum is greater than his opponents.

            Write a program that implements the optimal strategy. The optimal strategy yields maximum points when playing against the "best possible" opponent. Your program must further implement an optimal strategy for player 2.

            PROGRAM NAME: game1

            INPUT FORMAT

            Line 1: N, the size of the board
            Line 2-etc: N integers in the range (1..200) that are the contents of the game board, from left to right

            SAMPLE INPUT (file game1.in)

            6
            4 7 2 9
            5 2
            

            OUTPUT FORMAT

            Two space-separated integers on a line: the score of Player 1 followed by the score of Player 2.

            SAMPLE OUTPUT (file game1.out)

            18 11
            

            Analysis

            A typical game theory problem. The problem aims to find a solution for two players, which impletement optimal strategy for player 2. Considering the fact of only two operations for each step, making dynamic programming is helpful for these. F[i][j] is defined as the maximum sum for player 1 when choosing numbers among range [i,j], and s[i][j] stands for the sum of numbers among ith number and jth number. After all, new an array num[i] to store numbers.
            Then, considering the two activities in choosing, which can only be happened for numbers of the first and the last one. Since the description needs an optimal strategy for player two, it is reasonable for maximum the result.
            After all, the function can be presented below: f[i][j]=max{num[i]+sum[i+1][j]-f[i+1][j],num[j]+sum[i][j-1]-f[i][j-1]}, 1<=i,j<=n.
            Initialization: f[i][i]=num[i], 1<=i<=n.
            Tips in calculating: just only two variables: x,k. "j" is better fixed by x+k for f[i][j] is fully determined by f[i+1][j] and f[i][j-1], which are turing into f[x+1][x+k] and f[x][x+k-1]. It is obvious to making the first "for loop" of k and the next one is "x". Otherwise, i and j are too flexible to make loops.

            Code

            /*
            ID:braytay1
            PROG:game1
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <fstream>
            using namespace std;

            int n;
            int f[100][100],num[100],sum,s[100][100];

            int max(int a,int b){
                
            return a>b?a:b;
            }


            int main(){
                ifstream fin(
            "game1.in");
                ofstream fout(
            "game1.out");
                fin
            >>n;
                
            for(int i=0;i<n;i++) fin>>num[i];
                memset(f,
            0,sizeof f);
                memset(s,
            0,sizeof s);
                
            for(int i=0;i<n;i++) f[i][i]=num[i];
                
            for(int i=0;i<n;i++)
                    
            for(int j=0;j<n;j++)
                        
            for(int k=i;k<=j;k++)
                            s[i][j]
            +=num[k];
                
            for(int k=1;k<n;k++)
                    
            for(int x=0;x+k<n;x++)        
                        f[x][x
            +k]=max(num[x]+s[x+1][x+k]-f[x+1][x+k],num[x+k]+s[x][x+k-1]-f[x][x+k-1]);
                fout
            <<f[0][n-1]<<" "<<s[0][n-1]-f[0][n-1]<<endl;
                
            return 0;
            }


             

            posted on 2008-09-01 16:36 幻浪天空領主 閱讀(237) 評論(0)  編輯 收藏 引用 所屬分類: USACO

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            777午夜精品久久av蜜臀| 国产精品久久久天天影视| 一本一道久久a久久精品综合| 99精品国产免费久久久久久下载| 97精品伊人久久久大香线蕉| 国产一区二区精品久久凹凸| 久久99热这里只有精品国产| 国产成人无码精品久久久免费| 日韩人妻无码一区二区三区久久99| 久久久久久综合一区中文字幕| 一本一本久久A久久综合精品 | 无码任你躁久久久久久久| 麻豆AV一区二区三区久久| 少妇久久久久久被弄到高潮 | 国产69精品久久久久9999| 国产69精品久久久久9999APGF| 久久99精品久久久久久9蜜桃| 亚洲国产一成人久久精品| 久久久久香蕉视频| 久久精品免费观看| 国产国产成人精品久久| 色综合久久久久无码专区 | 精品蜜臀久久久久99网站| 中文精品久久久久人妻| 久久久久国色AV免费观看| 婷婷综合久久狠狠色99h| 精品蜜臀久久久久99网站| 久久精品亚洲中文字幕无码麻豆| 久久99久久99精品免视看动漫 | 亚洲午夜久久久| 久久人妻少妇嫩草AV蜜桃| 久久亚洲国产成人影院网站 | 国产精品毛片久久久久久久| 精品国产乱码久久久久久郑州公司| 亚洲AV乱码久久精品蜜桃| 综合久久国产九一剧情麻豆| 亚洲中文字幕无码一久久区| 亚洲综合熟女久久久30p| 久久久久久久97| 91精品国产91久久久久久青草| 国产AV影片久久久久久|