• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.1 Stamps

            Stamps

            Given a set of N stamp values (e.g., {1 cent, 3 cents}) and an upper limit K to the number of stamps that can fit on an envelope, calculate the largest unbroken list of postages from 1 cent to M cents that can be created.

            For example, consider stamps whose values are limited to 1 cent and 3 cents; you can use at most 5 stamps. It's easy to see how to assemble postage of 1 through 5 cents (just use that many 1 cent stamps), and successive values aren't much harder:

            • 6 = 3 + 3
            • 7 = 3 + 3 + 1
            • 8 = 3 + 3 + 1 + 1
            • 9 = 3 + 3 + 3
            • 10 = 3 + 3 + 3 + 1
            • 11 = 3 + 3 + 3 + 1 + 1
            • 12 = 3 + 3 + 3 + 3
            • 13 = 3 + 3 + 3 + 3 + 1.

            However, there is no way to make 14 cents of postage with 5 or fewer stamps of value 1 and 3 cents. Thus, for this set of two stamp values and a limit of K=5, the answer is M=13.

            The most difficult test case for this problem has a time limit of 3 seconds.

            PROGRAM NAME: stamps

            INPUT FORMAT

            Line 1: Two integers K and N. K (1 <= K <= 200) is the total number of stamps that can be used. N (1 <= N <= 50) is the number of stamp values.
            Lines 2..end: N integers, 15 per line, listing all of the N stamp values, each of which will be at most 10000.

            SAMPLE INPUT (file stamps.in)

            5 2
                1 3
                

            OUTPUT FORMAT

            Line 1: One integer, the number of contiguous postage values starting at 1 cent that can be formed using no more than K stamps from the set.

            SAMPLE OUTPUT (file stamps.out)

            13
                
            Analysis

            This problem is also a DP problem. Considering the minimum volumn of a bag that cannot be stored by the K stamps and N kinds of the given stamps, we can find the problem becomes to find the dynamic function to describe it. We call f[i] as the minimum number of stamps to get the value of i, which depends on the minimum of a set of f[i-value[j]]+1),((i-Value[j]>=0 j=1..Stamps).

            In order to abbreviate functioning amount, find out the MaxValue, which is the maximum of set Value[i], and all of its multiples can be only fixed with i/MaxValue.

            At last,the edge of the problem is when f[k]>maxuse and print k-1.

            Code

            /*
            ID:braytay1
            PROG:stamps
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <fstream>
            #define min(a,b) (a<b)?a:b
            using namespace std;


            int main(){
                ifstream fin(
            "stamps.in");
                ofstream fout(
            "stamps.out");
                
            int k1,n,max=-1;
                
            int s[51];
                
            short int f[2000000];
                fin
            >>k1>>n;
                
            for (int i=1;i<=n;i++{fin>>s[i];max=(max>s[i])?max:s[i];}
                
            if (max==1{fout<<max*k1<<endl;return 0;}
                memset(f,
            100,sizeof(f));
                f[
            0]=0;
                
            for (int j=1,k=max;k<=max*k1;k+=max,j++) f[k]=j;
                
            int kk;
                
            for (kk=1;kk<=max*k1;++kk){
                    
            if (kk%max==0continue;
                    
            for (int j=1;j<=n;++j) {
                        
            if (kk-s[j]>=0
                            
            if (f[kk-s[j]]+1<f[kk]) f[kk]=f[kk-s[j]]+1;
                    }

                    
            if (f[kk]>k1) break;
                }

                fout
            <<kk-1<<endl;
                
            return 0;
            }


             

            posted on 2008-08-22 01:32 幻浪天空領主 閱讀(218) 評論(0)  編輯 收藏 引用 所屬分類: USACO

            <2025年6月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            国产免费久久精品丫丫| AV无码久久久久不卡蜜桃| 亚洲国产二区三区久久| 国内精品久久久久久久久电影网 | 日韩人妻无码一区二区三区久久99 | 99久久99久久精品免费看蜜桃| 99久久777色| 伊人久久一区二区三区无码| 无码人妻久久一区二区三区免费 | 午夜精品久久久久久久久| 久久狠狠色狠狠色综合| 午夜福利91久久福利| 91精品国产综合久久久久久| 久久亚洲天堂| 国产高潮国产高潮久久久91| 国产精品99久久久精品无码| 99久久精品免费看国产一区二区三区| 久久久久久噜噜精品免费直播| 亚洲AV无码久久精品色欲| 久久久99精品成人片中文字幕 | 久久亚洲sm情趣捆绑调教| 97久久婷婷五月综合色d啪蜜芽| 亚洲国产成人久久综合碰碰动漫3d | 久久热这里只有精品在线观看| 精品999久久久久久中文字幕| 久久国产免费直播| 亚洲精品第一综合99久久| 久久香蕉国产线看观看猫咪?v| 久久久精品午夜免费不卡| 国产美女久久精品香蕉69| 久久久无码精品亚洲日韩京东传媒| 精品久久久久久无码人妻热 | 色综合久久中文字幕综合网| 色综合合久久天天综合绕视看| 久久精品午夜一区二区福利| 亚洲精品乱码久久久久久中文字幕| 婷婷久久五月天| 国产A三级久久精品| 色欲综合久久躁天天躁蜜桃| 狠狠精品久久久无码中文字幕| 伊人久久综合精品无码AV专区|