• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.1 Shaping Regions

            Shaping Regions

            N opaque rectangles (1 <= N <= 1000) of various colors are placed on a white sheet of paper whose size is A wide by B long. The rectangles are put with their sides parallel to the sheet's borders. All rectangles fall within the borders of the sheet so that different figures of different colors will be seen.

            The coordinate system has its origin (0,0) at the sheet's lower left corner with axes parallel to the sheet's borders.

            PROGRAM NAME: rect1

            INPUT FORMAT

            The order of the input lines dictates the order of laying down the rectangles. The first input line is a rectangle "on the bottom".
            Line 1: A, B, and N, space separated (1 <= A,B <= 10,000)
            Lines 2-N+1: Five integers: llx, lly, urx, ury, color: the lower left coordinates and upper right coordinates of the rectangle whose color is `color' (1 <= color <= 2500) to be placed on the white sheet. The color 1 is the same color of white as the sheet upon which the rectangles are placed.

            SAMPLE INPUT (file rect1.in)

            20 20 3
            2 2 18 18 2
            0 8 19 19 3
            8 0 10 19 4
            

            INPUT EXPLANATION

            Note that the rectangle delineated by 0,0 and 2,2 is two units wide and two high. Here's a schematic diagram of the input:

            11111111111111111111
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11111111441111111111
            11111111441111111111
            

            The '4's at 8,0 to 10,19 are only two wide, not three (i.e., the grid contains a 4 and 8,0 and a 4 and 8,1 but NOT a 4 and 8,2 since this diagram can't capture what would be shown on graph paper).

            OUTPUT FORMAT

            The output file should contain a list of all the colors that can be seen along with the total area of each color that can be seen (even if the regions of color are disjoint), ordered by increasing color. Do not display colors with no area.

            SAMPLE OUTPUT (file rect1.out)

            1 91
            2 84
            3 187
            4 38
            Shaping Regions: Hint
            An array of all 'points' is too big; 16MB maximum. Keep track of the rectangles' coordinates; split the rectangle when an overlap occurs, e.g.: 
            +--------+      +-+--+--+
            |        |      | |2 |  |
            |        |      + +--+  |
            |  +-+   |  --> | |  |  |
            |  +-+   |      |1|  |3 |
            |        |      | +--+  |
            |        |      | | 4|  |
            +--------+      +-+--+--+
             
            Official analysis

            A straightforward approach to this problem would be to make an array which represents the table, and then draw all the rectangles on it. In the end, the program can just count the colors from the array and output them. Unfortunately, the maximum dimensions of this problem are 10,000 x 10,000, which means the program uses 100 million integers. That's too much, so we need another approach.

            An approach that does work for such large cases (and it actually is a lot faster too) is to keep track of the rectangles, and delete portions of them when they are covered by other rectangles. 
            Consider this input set: 
            0 0 10 10 5
            5 0 15 10 10
            

            The program first reads in the first rectangle and puts it in a list. When it reads a new rectangle it checks all items in the list if they overlap with the new rectangle. This is the case, and then it deletes the old rectangle from the list and adds all parts which aren't covered to the list. (So in this case, the program would delete the first rectangle, add 0 0 5 10 5 to the list and then add the second rectangle to the list). `` If you're unlucky, a new rectangle can create lots of new rectangles (when the new rectangle entirely fits into another one, the program creates four new rectangles which represent the leftover border:

            +--------+      +-+--+--+
            |        |      | |2 |  |
            |        |      + +--+  |
            |  +-+   |  --> | |  |  |
            |  +-+   |      |1|  |3 |
            |        |      | +--+  |
            |        |      | | 4|  |
            +--------+      +-+--+--+

            This is not a problem however, because there can be only 2500 rectangles and there is plenty of memory, so rectangles have to be cut very much to run out of memory. Note that with this approach, the only thing that matters is how many rectangles there are and how often they overlap. The maximum dimensions can be as large as you want, it doesn't matter for the running time.

            There is another solution to this problem, which runs in O(n*n*log n) time, but is quite tricky. First, we add one big white rectangle at the bottom - the paper. Then we make two arrays: one containing all vertical edges of the rectangles, and the other the horizontal ones. For each edge we have its coordinates and remember, whether it's the left or right edge (top or bottom). We sort these edges from left to right and from top to bottom. Then we go from left to right (sweep), jumping to every x-coordinate of vertical edges. At each step we update the set of rectangles seen. We also want to update the amount of each color seen so far. So for each x we go from top to bottom, for each y updating the set of rectagles at a point (in the structure described below) and choosing the top one, so that we can update the amounts of colors seen. The structure to hold the set of rectangles at a point should allow adding a rectangle (number from 1..1000), deleting a rectangle, and finding the top one. We can implement these operations in O(log n) time if we use a heap. To make adding and deleting run in O(log n) we must also have for each rectangle its position in the heap. So the total time spent at each point is O(log n). Thus the algorithm works in O(n*n*log n) time.

            Official Code

             

            #include <stdio.h>
            #include 
            <stdlib.h>
            #include 
            <string.h>

            FILE 
            *fp,*fo;

            struct rect
            {
                
            int c;
                
            int x1,y1,x2,y2;
            }
            ;

            int c[2501];
            rect r[
            10001];

            int intersect(rect a,const rect &b,rect out[4])
            {
                
            /* do they at all intersect? */
                
            if(b.x2<a.x1||b.x1>=a.x2)
                    
            return 0;
                
            if(b.y2<a.y1||b.y1>=a.y2)
                    
            return 0;
                
            /* they do */

                rect t;

                
            if(b.x1<=a.x1&&b.x2>=a.x2&&b.y1<=a.y1&&b.y2>=a.y2)
                        
            return -1;

                
            /* cutting `a' down to match b */
                
            int nout=0;
                
            if(b.x1>=a.x1) {
                    t
            =a,t.x2=b.x1;
                    
            if(t.x1!=t.x2)
                        
            out[nout++]=t;
                    a.x1
            =b.x1;
                }

                
            if(b.x2<a.x2) {
                    t
            =a,t.x1=b.x2;
                    
            if(t.x1!=t.x2)
                        
            out[nout++]=t;
                    a.x2
            =b.x2;
                }

                
            if(b.y1>=a.y1) {
                    t
            =a,t.y2=b.y1;
                    
            if(t.y1!=t.y2)
                        
            out[nout++]=t;
                    a.y1
            =b.y1;
                }

                
            if(b.y2<a.y2) {
                    t
            =a,t.y1=b.y2;
                    
            if(t.y1!=t.y2)
                        
            out[nout++]=t;
                    a.y2
            =b.y2;
                }

                
            return nout;
            }


            int main(void{
                fp
            =fopen("rect1.in","rt");
                fo
            =fopen("rect1.out","wt");

                
            int a,b,n;
                fscanf(fp,
            "%d %d %d",&a,&b,&n);

                r[
            0].c=1;
                r[
            0].x1=r[0].y1=0;
                r[
            0].x2=a;
                r[
            0].y2=b;

                rect t[
            4];

                
            int i,j,rr=1;
                
            for(i=0;i<n;i++{
                    
            int tmp;
                    fscanf(fp,
            "%d %d %d %d %d",&r[rr].x1,&r[rr].y1,&r[rr].x2,&r[rr].y2,&r[rr].c);

                    
            if(r[rr].x1>r[rr].x2) {
                        tmp
            =r[rr].x1;
                        r[rr].x1
            =r[rr].x2;
                        r[rr].x2
            =tmp;
                    }

                    
            if(r[rr].y1>r[rr].y2) {
                        tmp
            =r[rr].y1;
                        r[rr].y1
            =r[rr].y2;
                        r[rr].y2
            =tmp;
                    }


                    
            int nr=rr;
                    rect curr
            =r[rr++];
                    
            for(j=0;j<nr;j++{
                        
            int n=intersect(r[j],curr,t);
                        
            if(!n)
                            
            continue;
                        
            if(n==-1{
                            memmove(r
            +j,r+j+1,sizeof(rect)*(rr-j-1));
                            j
            --;
                            rr
            --;
                            nr
            --;
                            
            continue;
                        }

                        r[j]
            =t[--n];
                        
            for(;n-->0;)
                            r[rr
            ++]=t[n];
                    }

                }


                
            for(i=0;i<rr;i++)
                    c[r[i].c]
            +=(r[i].x2-r[i].x1)*(r[i].y2-r[i].y1);

                
            for(i=1;i<=2500;i++)
                    
            if(c[i])
                        fprintf(fo,
            "%d %d\n",i,c[i]);

                
            return 0;
            }


            My Code


            /*
            ID:braytay1
            PROG:rect1
            mble
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <fstream>
            using namespace std;

            struct rectangle{
                
            int lx;
                
            int ly;
                
            int rx;
                
            int ry;
                
            int color;
            }
            ;

            int A,B,N;
            int xs[2002],ys[2002];
            int area[2501];
            rectangle rec[
            1001];

            void swap(int *p1,int *p2){
                
            int tmp;
                tmp
            =*p1;
                
            *p1=*p2;
                
            *p2=tmp;
            }

            int partition(int a[],int p,int r){
                
            int x,i;
                x
            =a[r];
                i
            =p-1;
                
            for (int j=p;j<r;j++)
                
            {
                    
            if (a[j]<=x) {i++;swap(a+i,a+j);}
                }

                swap(a
            +i+1,a+r);
                
            return i+1;
            }

            void quicksort(int a[],int p,int r){
                
            if (p<r)
                
            {
                    
            int q;
                    q
            =partition(a,p,r);
                    quicksort(a,p,q
            -1);
                    quicksort(a,q
            +1,r);
                }

            }




            int color_num(rectangle &a){
                
            for (int i=N;i>=0;i--){
                    
            if ((a.lx>=rec[i].lx)&&(a.rx<=rec[i].rx)&&(a.ly>=rec[i].ly)&&(a.ry<=rec[i].ry))
                        
            return rec[i].color;
                }

                
            return 1;
            }

            int reform(int *p,int n){
                
            int tmp[2002],cur_num;
                tmp[
            0]=*p;
                cur_num
            =0;
                
            for (int i=1;i<=n;i++){
                    
            if (tmp[cur_num]!=*(p+i)) {
                        cur_num
            ++;
                        tmp[cur_num]
            =*(p+i);
                    }

                }

                
            for (int i=0;i<=n;i++*(p+i)=0;
                
            for (int i=0;i<=cur_num;i++*(p+i)=tmp[i];
                
            return cur_num;
            }

            int main(){
                ifstream fin(
            "rect1.in");
                ofstream fout(
            "rect1.out");
                memset(area,
            0,sizeof(area));
                fin
            >>A>>B>>N;
                rec[
            0].lx=0;rec[0].ly=0;rec[0].rx=A;rec[0].ry=B;rec[0].color=1;
                xs[
            0]=0;xs[1]=A;ys[0]=0;ys[1]=B;
                
            for (int i=1;i<=N;i++){
                    fin
            >>rec[i].lx>>rec[i].ly>>rec[i].rx>>rec[i].ry>>rec[i].color;
                    xs[i
            *2]=rec[i].lx;
                    xs[i
            *2+1]=rec[i].rx;
                    ys[i
            *2]=rec[i].ly;
                    ys[i
            *2+1]=rec[i].ry;
                }

                
            int xlong,ylong;
                quicksort(xs,
            0,2*N+1);
                quicksort(ys,
            0,2*N+1);
                xlong
            =reform(xs,2*N+1);
                ylong
            =reform(ys,2*N+1);
                quicksort(xs,
            0,xlong);
                quicksort(ys,
            0,ylong);
                
            int k=0;
                
            for (int i=0;i<ylong;i++){
                    
            for (int j=0;j<xlong;j++){
                        rectangle single;
                        
            if (xs[j]==xs[j+1]||ys[i]==ys[i+1]) continue;
                        single.lx
            =xs[j];single.ly=ys[i];single.rx=xs[j+1];single.ry=ys[i+1];
                        single.color
            =color_num(single);
                        area[single.color
            -1]+=(single.rx-single.lx)*(single.ry-single.ly);
                    }

                }

                
            for (int i=0;i<2500;i++)
                    
            if (area[i]) fout<<i+1<<" "<<area[i]<<endl;
                
            return 0;
            }

            posted on 2008-08-21 18:11 幻浪天空領主 閱讀(600) 評論(0)  編輯 收藏 引用 所屬分類: USACO

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久精品国产免费观看 | 99久久亚洲综合精品成人| 72种姿势欧美久久久久大黄蕉 | 亚洲美日韩Av中文字幕无码久久久妻妇| 欧美精品一区二区久久 | 久久91精品综合国产首页| 久久久国产视频| 国产综合免费精品久久久| 婷婷五月深深久久精品| 久久精品视屏| 色综合久久天天综合| 亚洲va久久久噜噜噜久久天堂| 国产伊人久久| 99久久国产免费福利| 久久永久免费人妻精品下载| 久久综合久久鬼色| 久久精品国产99国产电影网| 久久99久国产麻精品66| 无码任你躁久久久久久久| 成人精品一区二区久久久| 精品国产乱码久久久久久1区2区 | 人妻无码αv中文字幕久久琪琪布 人妻无码久久一区二区三区免费 人妻无码中文久久久久专区 | 久久婷婷五月综合成人D啪| 国产AⅤ精品一区二区三区久久| 色偷偷久久一区二区三区| 中文字幕久久精品| 香蕉久久永久视频| 一本久久综合亚洲鲁鲁五月天| 激情综合色综合久久综合| 久久亚洲国产精品一区二区| www久久久天天com| 久久国产精品99精品国产987| 精品熟女少妇a∨免费久久| 久久精品国产亚洲AV麻豆网站 | 品成人欧美大片久久国产欧美... 品成人欧美大片久久国产欧美 | 国产精品青草久久久久婷婷| 久久精品中文騷妇女内射| 久久天天躁狠狠躁夜夜avapp| 99久久精品日本一区二区免费| 九九久久自然熟的香蕉图片| 久久婷婷五月综合97色直播 |