• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.2 Feed Ratios

            Feed Ratios

            1998 ACM Finals, Dan Adkins

            Farmer John feeds his cows only the finest mixture of cow food, which has three components: Barley, Oats, and Wheat. While he knows the precise mixture of these easily mixable grains, he can not buy that mixture! He buys three other mixtures of the three grains and then combines them to form the perfect mixture.

            Given a set of integer ratios barley:oats:wheat, find a way to combine them IN INTEGER MULTIPLES to form a mix with some goal ratio x:y:z.

            For example, given the goal 3:4:5 and the ratios of three mixtures:

            1:2:3
            3:7:1
            2:1:2
            
            your program should find some minimum number of integer units (the `mixture') of the first, second, and third mixture that should be mixed together to achieve the goal ratio or print `NONE'. `Minimum number' means the sum of the three non-negative mixture integers is minimized.

            For this example, you can combine eight units of mixture 1, one unit of mixture 2, and five units of mixture 3 to get seven units of the goal ratio:

                8*(1:2:3) + 1*(3:7:1) + 5*(2:1:2) = (21:28:35) = 7*(3:4:5)
            

            Integers in the goal ratio and mixture ratios are all non-negative and smaller than 100 in magnitude. The number of units of each type of feed in the mixture must be less than 100. The mixture ratios are not linear combinations of each other.

            PROGRAM NAME: ratios

            INPUT FORMAT

            Line 1: Three space separated integers that represent the goal ratios
            Line 2..4: Each contain three space separated integers that represent the ratios of the three mixtures purchased.

            SAMPLE INPUT (file ratios.in)

            3 4 5
            1 2 3
            3 7 1
            2 1 2
            

            OUTPUT FORMAT

            The output file should contain one line containing four integers or the word `NONE'. The first three integers should represent the number of units of each mixture to use to obtain the goal ratio. The fourth number should be the multiple of the goal ratio obtained by mixing the initial feed using the first three integers as mixing ratios.

            SAMPLE OUTPUT (file ratios.out)

            8 1 5 7

            Analysis

            This problem seems to be a deoth search problem, which, as a matter of fact, is truly a mathematical problem. This problem can be represented in forms of matrix multiply or a linear equation set.

            Initially, the first line is saved in an array called b[MAX](MAX here is 3, but generally, we can deal with more complicated situations in this way by change the value of MAX).

            What the next MAX lines can do is also and may function better with a MAX-level matrix A[MAX][MAX](squred). Firstly, turn the description into equations:

            \large \left\{\begin{matrix}
a_{00}x_{0}+a_{01}x_{1}+a_{02}x_{2}=b_{0}\\ 
a_{10}x_{0}+a_{11}x_{1}+a_{12}x_{2}=b_{1}\\ 
a_{20}x_{0}+a_{21}x_{1}+a_{22}x_{2}=b_{2}
\end{matrix}\right.
            Later, using matrix to translate it:
             
            \large \begin{pmatrix}
a_{00} & a_{01} & a_{02}\\ 
a_{10} & a_{11} & a_{12}\\ 
a_{20} & a_{21} & a_{22}
\end{pmatrix}.\begin{pmatrix}
x_{0}\\ 
x_{1}\\ 
x_{2}
\end{pmatrix}=\begin{pmatrix}
b_{0}\\ 
b_{1}\\ 
b_{2}
\end{pmatrix}
            It is obvious to find the solution of the equation set by Cramer Law. But I nearly forget to tell you another important thing, which is as important as the mathematical method, is that if det(A) is 0 and not all of the elements in b[MAX] are 0, then the answer is NONE. What's more, as a practical problem, it is unbelievable to find the answer which is negative. Both are the edges to determine whether the answer is avaliable.

            After this, you may be interested in find det(A), and I will describe it in another post.

            Code
            /*
            ID:braytay1
            PROG:ratios
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <cmath>
            #include 
            <fstream>
            #define MAX 3
            #define eps 0.000001
            using namespace std;

            int det(int a[MAX][MAX]){
                
            double s=1;
                
            double tmp[MAX][MAX];
                
            for (int i=0;i<MAX;i++){
                    
            for (int j=0;j<MAX;j++){
                        tmp[i][j]
            =double(a[i][j]);
                    }

                }

                
            for (int k=0;k<MAX-1;k++){
                    
            for (int i=k+1;i<MAX;i++){        
                        
            for (int j=k+1;j<MAX;j++){
                            tmp[i][j]
            -=tmp[i][k]*tmp[k][j]/tmp[k][k];
                        }

                    }

                }

                
            for (int i=0;i<MAX;i++)
                    s
            *=tmp[i][i];
                
            int res;
                res
            =int(s);
                
            if (fabs(s-res)<eps) return res;
                
            else {
                    
            if (res>0return res+1;
                    
            else return res-1;
                }

            }

            int sp_gcd(int a,int b){
                a
            =abs(a);
                b
            =abs(b);
                
            if (a<b) return a==0?b:sp_gcd(b%a,a);
                
            else return b==0?a:sp_gcd(b,a%b);
            }


            int gcd(int a[MAX],int s){
                
            int res;
                res
            =sp_gcd(a[0],a[1]);
                
            for (int i=2;i<MAX;i++){
                    res
            =sp_gcd(res,a[i]);
                }

                res
            =sp_gcd(res,s);
                
            return res;
            }

            int main(){
                ifstream fin(
            "ratios.in");
                ofstream fout(
            "ratios.out");
                
            int A[MAX][MAX],b[MAX],x[MAX];
                
            int k,flag_s=0;
                
            for (int i=0;i<MAX;i++){
                    fin
            >>b[i];
                    
            if (b[i]) flag_s=1;
                }

                
            for (int i=0;i<MAX;i++)
                    
            for (int j=0;j<MAX;j++) fin>>A[j][i];
                k
            =det(A);
                
            if (k==0&&flag_s) cout<<"NONE"<<endl;
                
            else {
                    
            int k_sign;
                    
            if (k>0) k_sign=1;
                    
            else if (k==0) k_sign=0;
                    
            else k_sign=-1;
                    
            for (int i=0;i<MAX;i++){
                        
            int A_tmp[MAX][MAX];
                        
            for (int i1=0;i1<MAX;i1++){
                            
            for (int j1=0;j1<MAX;j1++){
                                
            if (j1==i) A_tmp[i1][j1]=b[i1];
                                
            else A_tmp[i1][j1]=A[i1][j1];
                            }

                        }

                        x[i]
            =det(A_tmp);
                    }


                    
            int div;
                    div
            =gcd(x,k);
                    
            for (int i=0;i<MAX;i++){
                        
            if (x[i]*k_sign<0{
                            fout
            <<"NONE"<<endl;
                            
            return 0;
                        }

                    }

                    
            for (int i=0;i<MAX;i++){
                        x[i]
            =x[i]/div*k_sign;
                        fout
            <<x[i]<<" ";
                    }

                    k
            =k/div*k_sign;
                    fout
            <<k<<endl;
                }

                
            return 0;
            }

            posted on 2008-08-26 00:46 幻浪天空領(lǐng)主 閱讀(389) 評(píng)論(0)  編輯 收藏 引用 所屬分類(lèi): USACO

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(lèi)(23)

            文章檔案(22)

            搜索

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            国产91久久综合| 久久国产色AV免费看| 久久一区二区三区免费| 中文字幕无码久久精品青草| 五月丁香综合激情六月久久| 久久精品国产99国产精偷| 欧美伊人久久大香线蕉综合69| 亚洲国产精品综合久久网络| 久久精品中文无码资源站| 久久精品无码免费不卡| 久久99国内精品自在现线| 亚洲精品美女久久久久99小说| 99久久精品国内| 久久精品国产AV一区二区三区| 久久人人爽人人爽AV片| 久久免费高清视频| 人妻无码久久一区二区三区免费| 欧美精品丝袜久久久中文字幕 | 久久夜色精品国产噜噜亚洲AV| 精品国产乱码久久久久久浪潮| 99re这里只有精品热久久| 久久久精品久久久久影院| 久久99久久成人免费播放| 亚洲综合精品香蕉久久网97| 久久久一本精品99久久精品88| 久久91精品国产91久| 久久久久亚洲AV成人网人人软件| 国产亚洲婷婷香蕉久久精品 | 久久99中文字幕久久| 久久精品亚洲中文字幕无码麻豆| 伊人久久综合精品无码AV专区| 囯产精品久久久久久久久蜜桃| 色综合久久中文字幕综合网| 久久综合色区| 亚洲精品tv久久久久久久久久| 亚洲国产精品综合久久网络| 日日狠狠久久偷偷色综合免费| 亚洲国产精品综合久久网络| 久久国产免费直播| 久久精品国产亚洲AV无码麻豆 | 久久精品无码午夜福利理论片|