• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.1 Shaping Regions

            Shaping Regions

            N opaque rectangles (1 <= N <= 1000) of various colors are placed on a white sheet of paper whose size is A wide by B long. The rectangles are put with their sides parallel to the sheet's borders. All rectangles fall within the borders of the sheet so that different figures of different colors will be seen.

            The coordinate system has its origin (0,0) at the sheet's lower left corner with axes parallel to the sheet's borders.

            PROGRAM NAME: rect1

            INPUT FORMAT

            The order of the input lines dictates the order of laying down the rectangles. The first input line is a rectangle "on the bottom".
            Line 1: A, B, and N, space separated (1 <= A,B <= 10,000)
            Lines 2-N+1: Five integers: llx, lly, urx, ury, color: the lower left coordinates and upper right coordinates of the rectangle whose color is `color' (1 <= color <= 2500) to be placed on the white sheet. The color 1 is the same color of white as the sheet upon which the rectangles are placed.

            SAMPLE INPUT (file rect1.in)

            20 20 3
            2 2 18 18 2
            0 8 19 19 3
            8 0 10 19 4
            

            INPUT EXPLANATION

            Note that the rectangle delineated by 0,0 and 2,2 is two units wide and two high. Here's a schematic diagram of the input:

            11111111111111111111
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11111111441111111111
            11111111441111111111
            

            The '4's at 8,0 to 10,19 are only two wide, not three (i.e., the grid contains a 4 and 8,0 and a 4 and 8,1 but NOT a 4 and 8,2 since this diagram can't capture what would be shown on graph paper).

            OUTPUT FORMAT

            The output file should contain a list of all the colors that can be seen along with the total area of each color that can be seen (even if the regions of color are disjoint), ordered by increasing color. Do not display colors with no area.

            SAMPLE OUTPUT (file rect1.out)

            1 91
            2 84
            3 187
            4 38
            Shaping Regions: Hint
            An array of all 'points' is too big; 16MB maximum. Keep track of the rectangles' coordinates; split the rectangle when an overlap occurs, e.g.: 
            +--------+      +-+--+--+
            |        |      | |2 |  |
            |        |      + +--+  |
            |  +-+   |  --> | |  |  |
            |  +-+   |      |1|  |3 |
            |        |      | +--+  |
            |        |      | | 4|  |
            +--------+      +-+--+--+
             
            Official analysis

            A straightforward approach to this problem would be to make an array which represents the table, and then draw all the rectangles on it. In the end, the program can just count the colors from the array and output them. Unfortunately, the maximum dimensions of this problem are 10,000 x 10,000, which means the program uses 100 million integers. That's too much, so we need another approach.

            An approach that does work for such large cases (and it actually is a lot faster too) is to keep track of the rectangles, and delete portions of them when they are covered by other rectangles. 
            Consider this input set: 
            0 0 10 10 5
            5 0 15 10 10
            

            The program first reads in the first rectangle and puts it in a list. When it reads a new rectangle it checks all items in the list if they overlap with the new rectangle. This is the case, and then it deletes the old rectangle from the list and adds all parts which aren't covered to the list. (So in this case, the program would delete the first rectangle, add 0 0 5 10 5 to the list and then add the second rectangle to the list). `` If you're unlucky, a new rectangle can create lots of new rectangles (when the new rectangle entirely fits into another one, the program creates four new rectangles which represent the leftover border:

            +--------+      +-+--+--+
            |        |      | |2 |  |
            |        |      + +--+  |
            |  +-+   |  --> | |  |  |
            |  +-+   |      |1|  |3 |
            |        |      | +--+  |
            |        |      | | 4|  |
            +--------+      +-+--+--+

            This is not a problem however, because there can be only 2500 rectangles and there is plenty of memory, so rectangles have to be cut very much to run out of memory. Note that with this approach, the only thing that matters is how many rectangles there are and how often they overlap. The maximum dimensions can be as large as you want, it doesn't matter for the running time.

            There is another solution to this problem, which runs in O(n*n*log n) time, but is quite tricky. First, we add one big white rectangle at the bottom - the paper. Then we make two arrays: one containing all vertical edges of the rectangles, and the other the horizontal ones. For each edge we have its coordinates and remember, whether it's the left or right edge (top or bottom). We sort these edges from left to right and from top to bottom. Then we go from left to right (sweep), jumping to every x-coordinate of vertical edges. At each step we update the set of rectangles seen. We also want to update the amount of each color seen so far. So for each x we go from top to bottom, for each y updating the set of rectagles at a point (in the structure described below) and choosing the top one, so that we can update the amounts of colors seen. The structure to hold the set of rectangles at a point should allow adding a rectangle (number from 1..1000), deleting a rectangle, and finding the top one. We can implement these operations in O(log n) time if we use a heap. To make adding and deleting run in O(log n) we must also have for each rectangle its position in the heap. So the total time spent at each point is O(log n). Thus the algorithm works in O(n*n*log n) time.

            Official Code

             

            #include <stdio.h>
            #include 
            <stdlib.h>
            #include 
            <string.h>

            FILE 
            *fp,*fo;

            struct rect
            {
                
            int c;
                
            int x1,y1,x2,y2;
            }
            ;

            int c[2501];
            rect r[
            10001];

            int intersect(rect a,const rect &b,rect out[4])
            {
                
            /* do they at all intersect? */
                
            if(b.x2<a.x1||b.x1>=a.x2)
                    
            return 0;
                
            if(b.y2<a.y1||b.y1>=a.y2)
                    
            return 0;
                
            /* they do */

                rect t;

                
            if(b.x1<=a.x1&&b.x2>=a.x2&&b.y1<=a.y1&&b.y2>=a.y2)
                        
            return -1;

                
            /* cutting `a' down to match b */
                
            int nout=0;
                
            if(b.x1>=a.x1) {
                    t
            =a,t.x2=b.x1;
                    
            if(t.x1!=t.x2)
                        
            out[nout++]=t;
                    a.x1
            =b.x1;
                }

                
            if(b.x2<a.x2) {
                    t
            =a,t.x1=b.x2;
                    
            if(t.x1!=t.x2)
                        
            out[nout++]=t;
                    a.x2
            =b.x2;
                }

                
            if(b.y1>=a.y1) {
                    t
            =a,t.y2=b.y1;
                    
            if(t.y1!=t.y2)
                        
            out[nout++]=t;
                    a.y1
            =b.y1;
                }

                
            if(b.y2<a.y2) {
                    t
            =a,t.y1=b.y2;
                    
            if(t.y1!=t.y2)
                        
            out[nout++]=t;
                    a.y2
            =b.y2;
                }

                
            return nout;
            }


            int main(void{
                fp
            =fopen("rect1.in","rt");
                fo
            =fopen("rect1.out","wt");

                
            int a,b,n;
                fscanf(fp,
            "%d %d %d",&a,&b,&n);

                r[
            0].c=1;
                r[
            0].x1=r[0].y1=0;
                r[
            0].x2=a;
                r[
            0].y2=b;

                rect t[
            4];

                
            int i,j,rr=1;
                
            for(i=0;i<n;i++{
                    
            int tmp;
                    fscanf(fp,
            "%d %d %d %d %d",&r[rr].x1,&r[rr].y1,&r[rr].x2,&r[rr].y2,&r[rr].c);

                    
            if(r[rr].x1>r[rr].x2) {
                        tmp
            =r[rr].x1;
                        r[rr].x1
            =r[rr].x2;
                        r[rr].x2
            =tmp;
                    }

                    
            if(r[rr].y1>r[rr].y2) {
                        tmp
            =r[rr].y1;
                        r[rr].y1
            =r[rr].y2;
                        r[rr].y2
            =tmp;
                    }


                    
            int nr=rr;
                    rect curr
            =r[rr++];
                    
            for(j=0;j<nr;j++{
                        
            int n=intersect(r[j],curr,t);
                        
            if(!n)
                            
            continue;
                        
            if(n==-1{
                            memmove(r
            +j,r+j+1,sizeof(rect)*(rr-j-1));
                            j
            --;
                            rr
            --;
                            nr
            --;
                            
            continue;
                        }

                        r[j]
            =t[--n];
                        
            for(;n-->0;)
                            r[rr
            ++]=t[n];
                    }

                }


                
            for(i=0;i<rr;i++)
                    c[r[i].c]
            +=(r[i].x2-r[i].x1)*(r[i].y2-r[i].y1);

                
            for(i=1;i<=2500;i++)
                    
            if(c[i])
                        fprintf(fo,
            "%d %d\n",i,c[i]);

                
            return 0;
            }


            My Code


            /*
            ID:braytay1
            PROG:rect1
            mble
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <fstream>
            using namespace std;

            struct rectangle{
                
            int lx;
                
            int ly;
                
            int rx;
                
            int ry;
                
            int color;
            }
            ;

            int A,B,N;
            int xs[2002],ys[2002];
            int area[2501];
            rectangle rec[
            1001];

            void swap(int *p1,int *p2){
                
            int tmp;
                tmp
            =*p1;
                
            *p1=*p2;
                
            *p2=tmp;
            }

            int partition(int a[],int p,int r){
                
            int x,i;
                x
            =a[r];
                i
            =p-1;
                
            for (int j=p;j<r;j++)
                
            {
                    
            if (a[j]<=x) {i++;swap(a+i,a+j);}
                }

                swap(a
            +i+1,a+r);
                
            return i+1;
            }

            void quicksort(int a[],int p,int r){
                
            if (p<r)
                
            {
                    
            int q;
                    q
            =partition(a,p,r);
                    quicksort(a,p,q
            -1);
                    quicksort(a,q
            +1,r);
                }

            }




            int color_num(rectangle &a){
                
            for (int i=N;i>=0;i--){
                    
            if ((a.lx>=rec[i].lx)&&(a.rx<=rec[i].rx)&&(a.ly>=rec[i].ly)&&(a.ry<=rec[i].ry))
                        
            return rec[i].color;
                }

                
            return 1;
            }

            int reform(int *p,int n){
                
            int tmp[2002],cur_num;
                tmp[
            0]=*p;
                cur_num
            =0;
                
            for (int i=1;i<=n;i++){
                    
            if (tmp[cur_num]!=*(p+i)) {
                        cur_num
            ++;
                        tmp[cur_num]
            =*(p+i);
                    }

                }

                
            for (int i=0;i<=n;i++*(p+i)=0;
                
            for (int i=0;i<=cur_num;i++*(p+i)=tmp[i];
                
            return cur_num;
            }

            int main(){
                ifstream fin(
            "rect1.in");
                ofstream fout(
            "rect1.out");
                memset(area,
            0,sizeof(area));
                fin
            >>A>>B>>N;
                rec[
            0].lx=0;rec[0].ly=0;rec[0].rx=A;rec[0].ry=B;rec[0].color=1;
                xs[
            0]=0;xs[1]=A;ys[0]=0;ys[1]=B;
                
            for (int i=1;i<=N;i++){
                    fin
            >>rec[i].lx>>rec[i].ly>>rec[i].rx>>rec[i].ry>>rec[i].color;
                    xs[i
            *2]=rec[i].lx;
                    xs[i
            *2+1]=rec[i].rx;
                    ys[i
            *2]=rec[i].ly;
                    ys[i
            *2+1]=rec[i].ry;
                }

                
            int xlong,ylong;
                quicksort(xs,
            0,2*N+1);
                quicksort(ys,
            0,2*N+1);
                xlong
            =reform(xs,2*N+1);
                ylong
            =reform(ys,2*N+1);
                quicksort(xs,
            0,xlong);
                quicksort(ys,
            0,ylong);
                
            int k=0;
                
            for (int i=0;i<ylong;i++){
                    
            for (int j=0;j<xlong;j++){
                        rectangle single;
                        
            if (xs[j]==xs[j+1]||ys[i]==ys[i+1]) continue;
                        single.lx
            =xs[j];single.ly=ys[i];single.rx=xs[j+1];single.ry=ys[i+1];
                        single.color
            =color_num(single);
                        area[single.color
            -1]+=(single.rx-single.lx)*(single.ry-single.ly);
                    }

                }

                
            for (int i=0;i<2500;i++)
                    
            if (area[i]) fout<<i+1<<" "<<area[i]<<endl;
                
            return 0;
            }

            posted on 2008-08-21 18:11 幻浪天空領主 閱讀(611) 評論(0)  編輯 收藏 引用 所屬分類: USACO

            <2025年8月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久人人爽人人澡人人高潮AV| 一本一本久久a久久精品综合麻豆| 欧美午夜精品久久久久免费视| 久久精品无码专区免费青青| 久久精品国产99国产精偷 | 伊色综合久久之综合久久| 99久久这里只精品国产免费| 国产精品久久久久aaaa| 欧美日韩精品久久久免费观看| 欧美黑人又粗又大久久久| 国产精品免费久久| 精品乱码久久久久久久| 久久国产精品免费一区二区三区 | 午夜精品久久久久成人| 久久99国产精品99久久| 精品国产乱码久久久久久呢 | 中文字幕无码av激情不卡久久| 久久九九精品99国产精品| 亚洲国产一成久久精品国产成人综合| 好属妞这里只有精品久久| 漂亮人妻被中出中文字幕久久| 99久久夜色精品国产网站| 久久Av无码精品人妻系列| 久久精品国产久精国产果冻传媒| 国产综合精品久久亚洲| 久久免费国产精品一区二区| 久久99精品国产麻豆| 久久精品国产日本波多野结衣| 久久久久无码中| 日本久久久久久久久久| 伊人久久大香线蕉精品不卡| 久久久久人妻一区精品| 久久无码一区二区三区少妇 | 色偷偷偷久久伊人大杳蕉| 久久人人爽人人爽人人片AV不| 亚洲第一永久AV网站久久精品男人的天堂AV | 亚洲欧美成人久久综合中文网 | 日本人妻丰满熟妇久久久久久| 日本五月天婷久久网站| 久久精品国产亚洲AV不卡| 亚洲乱码精品久久久久..|