• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            天行健 君子當自強而不息

            Using Key?Framed Skeletal Animation(4)

            Matching Animations to Bones

            After you've loaded the animation data, you need to map the animation classes to their respective bones in the bone hierarchy. Mapping the hierarchies is important because whenever an animation is updated, you need a quick way to access the bone's transformations. By mapping, you create an easier method of accessing the bones.

            In this instance, the bone hierarchy will be represented in a D3DXFRAME hierarchy. Inside the D3DXFRAME structure, there are two linked list pointers that you'll use to help construct the hierarchy. From the root D3DXFRAME structure you are using, you can access child objects through the D3DXFRAME::pFrameFirstChild pointer and sibling objects through the D3DXFRAME::pFrameSibling pointer.

            The next function in cAnimationCollection to which you want to pay attention is Map. You use the Map function to map the animation structure's m_Bone pointer to a frame in the frame hierarchy that shares the same name.

            The Map function scans through every cAnimationSet object and iterates every cAnimation object contained in each of the animation set objects. The name of each cAnimation object is compared to each of the frame's names; if a match is found, the cAnimation::m_Bone pointer is set to the frame's address.

            The Map function takes the hierarchy's root frame parameter.

            void cAnimationCollection::Map(D3DXFRAME *RootFrame)
            {
            // Go through each animation set
            cAnimationSet *AnimSet = m_AnimationSets;
            	while(AnimSet != NULL) 
            {
            // Go through each animation object
            cAnimation *Anim = AnimSet−>m_Animations;
            		while(Anim != NULL) 
            {
            // Go through all frames and look for match
            Anim−>m_Bone = FindFrame(RootFrame, Anim−>m_Name);
            			// Go to next animation object
            Anim = Anim−>m_Next;
            }
            		// Go to next animation set object
            AnimSet = AnimSet−>m_Next;
            }
            }

            Whereas the Map function only scans through each of the cAnimationSet and cAnimation objects, the FindFrame function recursively works through the frame hierarchy to look for a match to the name you provide. When it finds a matching name, the FindFrame function returns the pointer to the specific frame. Take a look at the FindFrame code on which the Map function depends.

            D3DXFRAME *cAnimationCollection::FindFrame(D3DXFRAME *Frame, char *Name)
            {
            D3DXFRAME *FramePtr;
            	// Return NULL if no frame
            if(!Frame)
            return NULL;
            	// Return current frame if no name used
            if(!Name)
            return Frame;
            	// Process child frames
            if((FramePtr = FindFrame(Frame−>pFrameFirstChild, Name)))
            return FramePtr;
            	// Process sibling frames
            if((FramePtr = FindFrame(Frame−>pFrameSibling, Name)))
            return FramePtr;
            	// Nothing found
            return NULL;
            }

            Again, take a deep breath. The animation data has been loaded, and you've mapped the animation objects to the bone hierarchy. All that's left to do is update the animation and set the transformation matrices for the bones.

             

            Updating Animations

            After you've matched the animation classes to the bone hierarchy, you can begin animating your meshes! All you have to do is scan the animation keys for each bone, applying the interpolated transformations to each bone's transformation before rendering. This is merely a matter of iterating through each animation class and its keys to find the proper key values to use.

            Going back to the cAnimationCollection class, you can see that one function will do all that for you. By supplying the cAnimationCollection::Update function with the name of the animation set you want to use, as well as the time in the animation, all of the transformation matrices in your entire mapped bone hierarchy will be set and ready for rendering.

            Take a closer look at the Update function to see how you can update your animation data.

            void cAnimationCollection::Update(char *AnimationSetName, DWORD Time)
            {
            cAnimationSet *AnimSet = m_AnimationSets;
            DWORD i, Key, Key2;
            	// Look for matching animation set name if used
            if(AnimationSetName)
            {
            // Find matching animation set name
            while(AnimSet != NULL)
            {
            // Break when match found
            if(!stricmp(AnimSet−>m_Name, AnimationSetName))
            break;
            			// Go to next animation set object
            AnimSet = AnimSet−>m_Next;
            }
            }
            	// Return no set found
            if(AnimSet == NULL)
            return;

            The Update function starts by scanning the list of animation sets loaded into the linked list. If you instead supply a NULL value for AnimationSetName, Update will merely use the first animation set in the list (which happens to be the last set loaded). If no matching sets are found using the name you specified, the function returns without further delay.

            Once a matching animation set is found, however, the code continues by scanning each cAnimation object in it. For each animation object, the entire list of keys (translation, scaling, rotation, and transformation) is searched, and the time you specify is checked to see which key to use.

            After you've found the proper key to use, the values (rotation, scaling, translation, or transformation) are interpolated, and a final transformation matrix is computed. This final transformation matrix is then stored in the mapped bone (as pointed to by the m_Bone pointer).

            You've already seen how to scan a list of keys to look for the ones between which a specific time falls, so I'll skip the code here.

            Once you've calculated the transformations to apply to each bone from the animation data, you can jump right back into the game and render the mesh. Remember, you must apply the transformation matrices for each bone to the appropriate vertices in the mesh, and the best way to do so is to use a vertex shader.


            posted on 2008-04-25 13:13 lovedday 閱讀(283) 評論(0)  編輯 收藏 引用

            公告

            導航

            統計

            常用鏈接

            隨筆分類(178)

            3D游戲編程相關鏈接

            搜索

            最新評論

            亚洲AV日韩AV天堂久久| 亚洲伊人久久精品影院| 久久久久婷婷| 精品少妇人妻av无码久久| 国产成人精品久久| 伊人久久大香线蕉AV色婷婷色| 久久99精品久久久久久| av色综合久久天堂av色综合在| 久久er国产精品免费观看2| 2019久久久高清456| 94久久国产乱子伦精品免费| 热re99久久6国产精品免费| 人妻无码久久精品| 国产高清美女一级a毛片久久w| 久久中文骚妇内射| 国产精品中文久久久久久久| 久久久久综合中文字幕| 久久久久国产精品| 蜜臀av性久久久久蜜臀aⅴ| 久久久久亚洲AV成人网人人网站 | 一本久久精品一区二区| 久久青草国产精品一区| 69久久夜色精品国产69| 人妻精品久久久久中文字幕69 | 国产美女久久精品香蕉69| 成人综合久久精品色婷婷| 久久久久亚洲精品无码网址 | 久久精品国产精品亜洲毛片| 99久久精品免费国产大片| 国产精品久久99| 成人精品一区二区久久| 亚洲国产精品久久久久久| 91精品国产91久久久久久青草| 久久综合狠狠综合久久| 久久精品国产亚洲AV香蕉| 国内精品伊人久久久久av一坑| WWW婷婷AV久久久影片| 久久久久亚洲精品无码蜜桃| 九九久久99综合一区二区| 国产L精品国产亚洲区久久| 亚洲国产成人久久综合一区77|