• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            天行健 君子當自強而不息

            Using Key?Framed Skeletal Animation(4)

            Matching Animations to Bones

            After you've loaded the animation data, you need to map the animation classes to their respective bones in the bone hierarchy. Mapping the hierarchies is important because whenever an animation is updated, you need a quick way to access the bone's transformations. By mapping, you create an easier method of accessing the bones.

            In this instance, the bone hierarchy will be represented in a D3DXFRAME hierarchy. Inside the D3DXFRAME structure, there are two linked list pointers that you'll use to help construct the hierarchy. From the root D3DXFRAME structure you are using, you can access child objects through the D3DXFRAME::pFrameFirstChild pointer and sibling objects through the D3DXFRAME::pFrameSibling pointer.

            The next function in cAnimationCollection to which you want to pay attention is Map. You use the Map function to map the animation structure's m_Bone pointer to a frame in the frame hierarchy that shares the same name.

            The Map function scans through every cAnimationSet object and iterates every cAnimation object contained in each of the animation set objects. The name of each cAnimation object is compared to each of the frame's names; if a match is found, the cAnimation::m_Bone pointer is set to the frame's address.

            The Map function takes the hierarchy's root frame parameter.

            void cAnimationCollection::Map(D3DXFRAME *RootFrame)
            {
            // Go through each animation set
            cAnimationSet *AnimSet = m_AnimationSets;
            	while(AnimSet != NULL) 
            {
            // Go through each animation object
            cAnimation *Anim = AnimSet−>m_Animations;
            		while(Anim != NULL) 
            {
            // Go through all frames and look for match
            Anim−>m_Bone = FindFrame(RootFrame, Anim−>m_Name);
            			// Go to next animation object
            Anim = Anim−>m_Next;
            }
            		// Go to next animation set object
            AnimSet = AnimSet−>m_Next;
            }
            }

            Whereas the Map function only scans through each of the cAnimationSet and cAnimation objects, the FindFrame function recursively works through the frame hierarchy to look for a match to the name you provide. When it finds a matching name, the FindFrame function returns the pointer to the specific frame. Take a look at the FindFrame code on which the Map function depends.

            D3DXFRAME *cAnimationCollection::FindFrame(D3DXFRAME *Frame, char *Name)
            {
            D3DXFRAME *FramePtr;
            	// Return NULL if no frame
            if(!Frame)
            return NULL;
            	// Return current frame if no name used
            if(!Name)
            return Frame;
            	// Process child frames
            if((FramePtr = FindFrame(Frame−>pFrameFirstChild, Name)))
            return FramePtr;
            	// Process sibling frames
            if((FramePtr = FindFrame(Frame−>pFrameSibling, Name)))
            return FramePtr;
            	// Nothing found
            return NULL;
            }

            Again, take a deep breath. The animation data has been loaded, and you've mapped the animation objects to the bone hierarchy. All that's left to do is update the animation and set the transformation matrices for the bones.

             

            Updating Animations

            After you've matched the animation classes to the bone hierarchy, you can begin animating your meshes! All you have to do is scan the animation keys for each bone, applying the interpolated transformations to each bone's transformation before rendering. This is merely a matter of iterating through each animation class and its keys to find the proper key values to use.

            Going back to the cAnimationCollection class, you can see that one function will do all that for you. By supplying the cAnimationCollection::Update function with the name of the animation set you want to use, as well as the time in the animation, all of the transformation matrices in your entire mapped bone hierarchy will be set and ready for rendering.

            Take a closer look at the Update function to see how you can update your animation data.

            void cAnimationCollection::Update(char *AnimationSetName, DWORD Time)
            {
            cAnimationSet *AnimSet = m_AnimationSets;
            DWORD i, Key, Key2;
            	// Look for matching animation set name if used
            if(AnimationSetName)
            {
            // Find matching animation set name
            while(AnimSet != NULL)
            {
            // Break when match found
            if(!stricmp(AnimSet−>m_Name, AnimationSetName))
            break;
            			// Go to next animation set object
            AnimSet = AnimSet−>m_Next;
            }
            }
            	// Return no set found
            if(AnimSet == NULL)
            return;

            The Update function starts by scanning the list of animation sets loaded into the linked list. If you instead supply a NULL value for AnimationSetName, Update will merely use the first animation set in the list (which happens to be the last set loaded). If no matching sets are found using the name you specified, the function returns without further delay.

            Once a matching animation set is found, however, the code continues by scanning each cAnimation object in it. For each animation object, the entire list of keys (translation, scaling, rotation, and transformation) is searched, and the time you specify is checked to see which key to use.

            After you've found the proper key to use, the values (rotation, scaling, translation, or transformation) are interpolated, and a final transformation matrix is computed. This final transformation matrix is then stored in the mapped bone (as pointed to by the m_Bone pointer).

            You've already seen how to scan a list of keys to look for the ones between which a specific time falls, so I'll skip the code here.

            Once you've calculated the transformations to apply to each bone from the animation data, you can jump right back into the game and render the mesh. Remember, you must apply the transformation matrices for each bone to the appropriate vertices in the mesh, and the best way to do so is to use a vertex shader.


            posted on 2008-04-25 13:13 lovedday 閱讀(283) 評論(0)  編輯 收藏 引用

            公告

            導航

            統計

            常用鏈接

            隨筆分類(178)

            3D游戲編程相關鏈接

            搜索

            最新評論

            亚洲&#228;v永久无码精品天堂久久 | 人妻精品久久久久中文字幕| 久久久中文字幕| 99久久人妻无码精品系列| 99久久精品国内| 久久亚洲高清综合| 久久久久精品国产亚洲AV无码 | 国产精品久久久久AV福利动漫| 热re99久久6国产精品免费| 欧美日韩中文字幕久久伊人| 久久久久亚洲av毛片大| 久久久久亚洲AV成人网人人网站 | 欧美亚洲色综久久精品国产| 狠狠色丁香久久综合婷婷| 久久九九免费高清视频 | 精品久久久久久中文字幕人妻最新| 久久香蕉一级毛片| 中文字幕乱码久久午夜| 国产福利电影一区二区三区久久久久成人精品综合 | 亚洲色大成网站www久久九| 人人狠狠综合久久亚洲婷婷| 久久成人小视频| 国产农村妇女毛片精品久久| 2019久久久高清456| 99热热久久这里只有精品68| 亚洲va久久久噜噜噜久久天堂| 久久九九亚洲精品| 国内精品久久人妻互换| 欧美成人免费观看久久| 国产免费久久久久久无码| 99久久成人国产精品免费| 久久国语露脸国产精品电影| 久久国产香蕉一区精品| 青青青青久久精品国产h| 久久精品无码一区二区无码| 一本久久知道综合久久| 久久婷婷色香五月综合激情 | 国产精品久久新婚兰兰 | 久久久久久伊人高潮影院| 久久久黄片| 久久一本综合|