青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

天行健 君子當自強而不息

Timing in Animation and Movement(4)

Walking Curved Paths

In your game, the paths need not be so straight. You can have your objects move along a nice, curvy path, such as when a character walks around in a circle. Trying to define a smooth circular path using straight lines is nearly impossible, so you must develop a second type of path−one that can handle curves. Not just any type of curve, however. Remember that this is advanced animation−we're going for the big leagues here, and that major hitter you want is a cubic Bezier curve! As Figure 2.3 illustrates, a cubic Bezier curve uses four control points (two end points and two midpoints) to define the various aspects of the curve.

As you can see, a cubic Bezier curve is not a typical curve−it can bend and twist in a myriad of curved shapes. By manipulating the four control points you can create some really useful paths to use in your projects. The way a cubic Bezier curve works is fairly easy in theory, but a little difficult to implement.

To understand the theory behind a cubic Bezier curve, take a look at Figure 2.4, which shows how the curve is drawn using the four control points.

The purpose of dividing the lines that connect the curve's points is both for visual aid and to serve as the curve's granularity (or smoothness). The more additional divisions you add to each line, the smoother the resulting curve will look. To actually see the curve that the points create, you need to connect the divisions on either side of the line, as you can see in Figure 2.5

Although it's cool to draw the curve in the manner I just showed you, it won't make much sense to your computer, nor will it help you figure out the coordinates of a point in the curve. What you need to do is come up with a way to calculate the exact coordinates of any point along the curve. That way, you can do anything you want with the coordinates, from drawing curves to calculating the coordinates where you want to position an object along the curve path! The formula to calculate the coordinates along the curve is

In the formula, the control points are defined as P0, P1, P2, and P3, which represent the starting point, first midpoint, second midpoint, and ending point, respectively. The resulting coordinates along the curve are defined as C(s), where s is a scalar value (or a time value) ranging from 0 to 1 that determines the position along the curve for which the coordinates should be calculated.

A value of s=0 designates the starting point, whereas a value of s=1 designates the ending point. Any value of s from 0 to 1 designates a point between the two end points. Therefore, to calculate the midpoint of the curve, you would specify s=0.5. The one−quarter position of the curve would be s=0.25, and so on.

To make things easy, you can create a function that takes the four control points (as vector objects) and a scalar value as parameters. The function will return another vector object that contains the coordinates of the point along the curve as specified by the four points and the scalar value. Call the function CubicBezierCurve, and use the following prototype to define it.

void CubicBezierCurve(D3DXVECTOR3 *vecPoint1, // Start point
  D3DXVECTOR3 *vecPoint2, // Midpoint 1
  D3DXVECTOR3 *vecPoint3, // Midpoint 2
  D3DXVECTOR3 *vecPoint4, // End point
  float Scalar,
  D3DXVECTOR3 *vecOut)
{

Now get ready for this−you're going to recreate the cubic Bezier curve formula in program code by replacing
the appropriate variables with the control point vectors and the scalar value.

// C(s) =
*vecOut =
// P0 * (1 − s)3 +
(*vecPoint1)*(1.0f−Scalar)*(1.0f−Scalar)*(1.0f−Scalar) +
// P1 * 3 * s * (1 − s)2 +
(*vecPoint2)*3.0f*Scalar*(1.0f−Scalar)*(1.0f−Scalar) +
// P2 * 3 * s2 * (1 − s) +
(*vecPoint3)*3.0f*Scalar*Scalar*(1.0f−Scalar) +
// P3 * s3
(*vecPoint4)*Scalar*Scalar*Scalar;
}

That's it! Yep, from now on you can calculate the coordinates along a cubic Bezier curve by passing the four control points' coordinates, a scalar, and a returning vector object. For example, going back to the sample curve, you can use the following function call to CubicBezierCurve to find the parametric midpoint:

D3DXVECTOR3 vecPos;

CubicBezierCurve(&D3DXVECTOR3(−50.0f, 25.0f, 0.0f),
  &D3DXVECTOR3(0.0f, 50.0f, 0.0f),
  &D3DXVECTOR3(50.0f, 0.0f, 0.0f),
  &D3DXVECTOR3(25.0f, −50.0f, 0.0f) ,
  0.5f, &vecPos);

Getting back to the point, you can use the return coordinates from the CubicBezierCurve function (contained in the vecPos vector object) as the coordinates in which to place an object in the game. By slowly changing the scalar value from 0 to 1 (over a specified amount of time), you move the object from the start of the path to the end. For instance, to travel a curved path over a period of 1,000 milliseconds, you can use the following code:

// vecPoints[4] = Starting, midpoint 1, midpoint 2, and end points
// Every frame, use the following code to position an object along the curve based on the current time.
D3DXVECTOR3 vecPos;
float Scalar = (float)(timeGetTime() % 1001) / 1000.0f;

CubicBezierCurve(&vecPoints[0], &vecPoints[1],  &vecPoints[2], &vecPoints[3],  Scalar, &vecPos);

// Use vecPos.x, vecPos.y, and vecPos.z coordinates for object

That's cool, but having to deal with a scalar value is a little unorthodox when you need to work with actual 3D unit measurements. I mean, how are you supposed to know which scalar value to use when you want to move an object 50 units along the curved path? Isn't there a way to calculate the length of the curve and use that, much like you did with straight lines?

Strangely enough, no. There is no easy way to calculate the length of a Bezier curve. However, you can approximate the length using a few simple calculations. Assuming the four control points of the curve are denoted as p0, p1, p2, and p3, you can add the lengths between the points p0 and p1, p1 and p2, and p2 and p3, divide the result in half, and add the length between points p0 and p3 (also divided in half). In code, those calculations would look like this:

// p[4] = four control points' coordinate vectors
float Length01 = D3DXVec3Length(&(p[1]−p[0]));
float Length12 = D3DXVec3Length(&(p[2]−p[1]));
float Length23 = D3DXVec3Length(&(p[3]−p[2]));
float Length03 = D3DXVec3Length(&(p[3]−p[0]));

float CurveLength = (Length01+Length12+Length23) * 0.5f + Length03 * 0.5f;

The CurveLength variable will therefore contain the estimated length of the curve. You'll use the CurveLength value much like you did in the straight−path calculations to convert the unit length to a scalar value to calculate the exact coordinates along the curve.

// Pos = position in curve (from 0−CurveLength)
float Scalar = Pos / CurveLength;
CubicBezierCurve(&vecPoints[0], &vecPoints[1], &vecPoints[2], &vecPoints[3],  Scalar, &vecPos);

As you can see, cubic Bezier curves aren't too difficult to use. The formulas are pretty basic, and I'd rather leave it up to the math textbooks to go into the details of the calculations (or a fine book like Kelly Dempski's Focus On Curves and Surfaces). For now, I'm only interested in making it work for your game project. Speaking of that, let's see what you can do with your newfound knowledge of using straight and curved paths to create routes.

 

Main Routine:

#include <windows.h>
#include 
"d3d9.h"
#include 
"d3dx9.h"
#include 
"Direct3D.h"

struct sLine
{
    D3DXVECTOR3 start;
    D3DXVECTOR3 end;
};

struct sCurve
{
    D3DXVECTOR3 start;
    D3DXVECTOR3 end;
    D3DXVECTOR3 control1;
    D3DXVECTOR3 control2;
};

struct sBackdropVertex
{
    
float x, y, z, rhw;
    
float u, v;        
};

#define BACKDROP_FVF (D3DFVF_XYZRHW | D3DFVF_TEX1)

////////////////////////////////////////////////////////////////////////////////////////////////

IDirect3D9
*                g_d3d;
IDirect3DDevice9
*        g_device;

D3DXMESHCONTAINER_EX
*    g_robot_mesh_container;
D3DXMESHCONTAINER_EX
*    g_ground_mesh_container;

D3DXVECTOR3                g_robot_pos[
4];
D3DXVECTOR3                g_robot_last_pos[
4];

IDirect3DVertexBuffer9
*    g_backdrop_vb;
IDirect3DTexture9
*        g_backdrop_texture;

sLine                    g_lines[
2];
sCurve                    g_curves[
2];

const char g_class_name[] = "TimeMovementClass";
const char g_caption[] = "Timed Movement Demo";

////////////////////////////////////////////////////////////////////////////////////////////////

LRESULT FAR PASCAL window_proc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam);

bool do_init(HWND hwnd);
void do_shutdown();
void do_frame();

void cal_pos_in_line(const sLine* line, float scalar, D3DXVECTOR3* pos);
void cubic_bezier_curve(const sCurve* curve, float scalar, D3DXVECTOR3* pos);

//////////////////////////////////////////////////////////////////////////////////////////////

int PASCAL WinMain(HINSTANCE inst, HINSTANCE, LPSTR, int cmd_show)
{      
    CoInitialize(NULL);    
// Initialize the COM system

    
// Create the window class here and register it

    WNDCLASSEX win_class;  

    win_class.cbSize        
= sizeof(win_class);
    win_class.style         
= CS_CLASSDC;
    win_class.lpfnWndProc   
= window_proc;
    win_class.cbClsExtra    
= 0;
    win_class.cbWndExtra    
= 0;
    win_class.hInstance     
= inst;
    win_class.hIcon         
= LoadIcon(NULL, IDI_APPLICATION);
    win_class.hCursor       
= LoadCursor(NULL, IDC_ARROW);
    win_class.hbrBackground 
= NULL;
    win_class.lpszMenuName  
= NULL;
    win_class.lpszClassName 
= g_class_name;
    win_class.hIconSm       
= LoadIcon(NULL, IDI_APPLICATION);

    
if(!RegisterClassEx(&win_class))
        
return FALSE;

    
// Create the main window
    HWND hwnd = CreateWindow(g_class_name, g_caption, WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX,
                             
00640480, NULL, NULL, inst, NULL);

    
if(hwnd == NULL)
        
return FALSE;

    ShowWindow(hwnd, cmd_show);
    UpdateWindow(hwnd);

    
// Call init function and enter message pump
    if(do_init(hwnd)) 
    {
        MSG msg;    
        ZeroMemory(
&msg, sizeof(MSG));

        
// Start message pump, waiting for user to exit
        while(msg.message != WM_QUIT) 
        {
            
if(PeekMessage(&msg, NULL, 00, PM_REMOVE)) 
            {
                TranslateMessage(
&msg);
                DispatchMessage(
&msg);
            }
      
            do_frame();    
// Render a single frame
        }
    }
  
    do_shutdown();
    UnregisterClass(g_class_name, inst);
    CoUninitialize();

    
return 0;
}

LRESULT FAR PASCAL window_proc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
    
// Only handle window destruction messages
    switch(msg) 
    {
    
case WM_DESTROY:
        PostQuitMessage(
0);
        
break;

    
case WM_KEYDOWN:
        
if(wParam == VK_ESCAPE)
            DestroyWindow(hwnd);

        
break;
    }

    
return DefWindowProc(hwnd, msg, wParam, lParam);
}

bool do_init(HWND hwnd)
{
    init_d3d(
&g_d3d, &g_device, hwnd, falsefalse);

    
if(FAILED(load_mesh(&g_robot_mesh_container, g_device, "..\\Data\\robot.x""..\\Data\\"00)))
        
return FALSE;

    
if(FAILED(load_mesh(&g_ground_mesh_container, g_device, "..\\Data\\ground.x""..\\Data\\"00)))
        
return FALSE;

    
// create the backdrop

    sBackdropVertex backdrop_verts[
4= 
    {
        {   
0.0f,   0.01.01.0f0.0f0.0f },
        { 
640.0f,   0.01.01.0f1.0f0.0f },
        {   
0.0f480.01.01.0f0.0f1.0f },
        { 
640.0f480.01.01.0f1.0f1.0f }            
    };

    g_device
->CreateVertexBuffer(sizeof(backdrop_verts), D3DUSAGE_WRITEONLY, BACKDROP_FVF, D3DPOOL_DEFAULT,
                                 
&g_backdrop_vb, NULL);

    
char* ptr;

    g_backdrop_vb
->Lock(00, (void**)&ptr, 0);
    memcpy(ptr, backdrop_verts, 
sizeof(backdrop_verts));
    g_backdrop_vb
->Unlock();

    D3DXCreateTextureFromFile(g_device, 
"..\\Data\\Backdrop.bmp"&g_backdrop_texture);

    
// setup a directional light

    D3DLIGHT9 light;
    ZeroMemory(
&light, sizeof(D3DLIGHT9));

    light.Type 
= D3DLIGHT_DIRECTIONAL;
    light.Diffuse.r 
= light.Diffuse.g = light.Diffuse.b = light.Diffuse.a = 1.0f;
    light.Direction 
= D3DXVECTOR3(0.0f-0.5f0.5f);

    g_device
->SetLight(0&light);
    g_device
->LightEnable(0, TRUE);

    
// define two lines
    g_lines[0].start = D3DXVECTOR3(-150.0f10.0f,   0.0f);
    g_lines[
0].end   = D3DXVECTOR3(   0.0f10.0f150.0f);
  
    g_lines[
1].start = D3DXVECTOR3(0.0f,  10.0f0.0f);
    g_lines[
1].end   = D3DXVECTOR3(0.0f150.0f0.0f);

    
// define two curves
    g_curves[0].start    = D3DXVECTOR3(  0.0f10.0f150.0f);
    g_curves[
0].control1 = D3DXVECTOR3(150.0f10.0f100.0f);
    g_curves[
0].control2 = D3DXVECTOR3(200.0f10.0f,  50.0f);
    g_curves[
0].end      = D3DXVECTOR3(150.0f10.0f,   0.0f);

    g_curves[
1].start    = D3DXVECTOR3(-150.0f50.0f-100.0f);
    g_curves[
1].control1 = D3DXVECTOR3( -20.0f0.0f-100.0f);
    g_curves[
1].control2 = D3DXVECTOR3(  20.0f0.0f-100.0f);
    g_curves[
1].end      = D3DXVECTOR3( 150.0f50.0f-100.0f);

    
return true;
}

void do_shutdown()
{
    
// free mesh data
    delete g_robot_mesh_container;    g_robot_mesh_container = NULL;
    delete g_ground_mesh_container;    g_ground_mesh_container 
= NULL;

    release_com(g_backdrop_vb);
    release_com(g_backdrop_texture);

    
// release D3D objects
    release_com(g_device);
    release_com(g_d3d);
}

void do_frame()
{
    
// compute a time scalar based on a sine wave
    float time   = timeGetTime() * 0.001f;
    
float scalar = (sin(time) + 1.0f* 0.5f;

    
// update the position of the robots
    cal_pos_in_line(&g_lines[0], scalar, &g_robot_pos[0]);
    cal_pos_in_line(
&g_lines[1], scalar, &g_robot_pos[1]);
    cubic_bezier_curve(
&g_curves[0], scalar, &g_robot_pos[2]);
    cubic_bezier_curve(
&g_curves[1], scalar, &g_robot_pos[3]);

    
// set a view transformation matrix

    D3DXMATRIX  mat_view;
    D3DXVECTOR3 eye(
0.0f240.0f-350.0f);
    D3DXVECTOR3 at(
0.0f0.0f0.0f);
    D3DXVECTOR3 up(
0.0f1.0f0.0f);

    D3DXMatrixLookAtLH(
&mat_view, &eye, &at, &up);
    g_device
->SetTransform(D3DTS_VIEW, &mat_view);

    
// clear the device and start drawing the scene

    g_device
->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, D3DCOLOR_RGBA(000255), 1.0f0);

    g_device
->BeginScene();

    
// draw the backdrop
    g_device->SetFVF(BACKDROP_FVF);
    g_device
->SetStreamSource(0, g_backdrop_vb, 0sizeof(sBackdropVertex));
    g_device
->SetTexture(0, g_backdrop_texture);
    g_device
->DrawPrimitive(D3DPT_TRIANGLESTRIP, 02);

    g_device
->SetRenderState(D3DRS_LIGHTING, TRUE);

    
// draw the ground mesh

    D3DXMATRIX mat_world;
    D3DXMatrixIdentity(
&mat_world);
    g_device
->SetTransform(D3DTS_WORLD, &mat_world);

    draw_mesh(g_ground_mesh_container);

    
// draw each of the four robots at theire respective locations
    for(DWORD i = 0; i < 4; i++)
    {
        
// calculate the rotation of the robots based on last known position, and update last position once done.

        D3DXVECTOR3 diff 
= g_robot_pos[i] - g_robot_last_pos[i];

        
float rot_x =  atan2(diff.y, diff.z);
        
float rot_y = -atan2(diff.z, diff.x);

        g_robot_last_pos[i] 
= g_robot_pos[i];

        
// rotate the robot to point in direction of movement
        D3DXMatrixRotationYawPitchRoll(&mat_world, rot_y, rot_x, 0.0f);

        
// position the robot by setting the coordinates directly in the world transformation matrix

        mat_world._41 
= g_robot_pos[i].x;
        mat_world._42 
= g_robot_pos[i].y;
        mat_world._43 
= g_robot_pos[i].z;

        g_device
->SetTransform(D3DTS_WORLD, &mat_world);

        draw_mesh(g_robot_mesh_container);
    }

    g_device
->SetRenderState(D3DRS_LIGHTING, FALSE);

    g_device
->EndScene();

    g_device
->Present(NULL, NULL, NULL, NULL);
}

void cal_pos_in_line(const sLine* line, float scalar, D3DXVECTOR3* pos)
{
    
*pos = (line->end - line->start) * scalar + line->start;
}

void cubic_bezier_curve(const sCurve* curve, float scalar, D3DXVECTOR3* pos)
{
    
*pos = (curve->start) * (1.0f - scalar) * (1.0f - scalar) * (1.0f - scalar)  +
           (curve
->control1) * 3.0f * scalar * (1.0f - scalar) * (1.0f - scalar) +
           (curve
->control2) * 3.0f * scalar * scalar * (1.0f - scalar)          +
           (curve
->end) * scalar * scalar * scalar;
}

 

Runtime Snap:

 

download source file


posted on 2008-04-16 15:31 lovedday 閱讀(412) 評論(0)  編輯 收藏 引用

公告

導航

統計

常用鏈接

隨筆分類(178)

3D游戲編程相關鏈接

搜索

最新評論

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            久久婷婷蜜乳一本欲蜜臀| 欧美视频在线免费| 亚洲电影在线观看| 欧美伊人久久久久久午夜久久久久| 夜夜精品视频| 亚洲免费影视| 久久久久九九九九| 欧美不卡视频| 99精品国产在热久久婷婷| 99这里有精品| 欧美成人高清视频| 久久看片网站| 亚洲国产成人在线| 一本一本a久久| 性伦欧美刺激片在线观看| 久久久成人网| 欧美性大战久久久久| 国产一区二区精品久久99| 在线观看一区欧美| 亚洲影院免费观看| 免费日韩av片| 在线亚洲激情| 麻豆国产精品777777在线| 欧美视频在线视频| 亚洲成人自拍视频| 午夜精品久久久久久99热| 免费看黄裸体一级大秀欧美| 99精品99| 女人香蕉久久**毛片精品| 国产精品一区二区在线观看网站| 1024欧美极品| 欧美在线观看一二区| 亚洲电影成人| 久久九九精品99国产精品| 欧美午夜www高清视频| 亚洲丰满少妇videoshd| 欧美一区深夜视频| av成人手机在线| 欧美高清视频www夜色资源网| 国产欧美丝祙| 午夜电影亚洲| 一区二区三区久久网| 欧美黄色一级视频| 亚洲国产第一| 免费亚洲一区二区| 欧美中文在线字幕| 国产毛片一区| 午夜亚洲影视| 亚洲综合日韩在线| 欧美午夜无遮挡| 亚洲网站视频福利| 99成人在线| 欧美私人网站| 亚洲综合清纯丝袜自拍| 一区二区免费在线视频| 欧美日韩高清在线一区| 日韩视频免费观看| 亚洲人成在线播放| 欧美精品videossex性护士| 亚洲欧洲一区二区三区久久| 久久视频一区二区| 久久久久九九九九| 亚洲高清不卡av| 亚洲高清不卡av| 欧美二区在线| 在线亚洲一区二区| 中文欧美在线视频| 国产女优一区| 老司机成人网| 国产在线视频不卡二| 野花国产精品入口| 亚洲老司机av| 国产精品久久久久久久久久久久久| 中文日韩欧美| 亚洲欧美国产va在线影院| 国产日韩一区二区三区| 久久亚洲捆绑美女| 免费观看久久久4p| 亚洲视频福利| 欧美在线一级视频| 一区二区三区在线视频播放| 欧美1区3d| 欧美电影在线观看| 亚洲免费网址| 久久久.com| 亚洲美女网站| 亚洲综合大片69999| 一区二区视频在线观看| 91久久久久久久久| 国产精品久久毛片a| 久久久久久久一区二区| 免播放器亚洲| 亚洲欧美视频在线观看视频| 久久精品成人欧美大片古装| 亚洲美女诱惑| 欧美专区在线| 亚洲视频一二区| 久久精品在线| 亚洲欧美国内爽妇网| 久久夜色精品| 欧美一区二区三区的| 牛夜精品久久久久久久99黑人| 亚洲欧美激情在线视频| 美国十次了思思久久精品导航| 亚洲欧美日韩区| 欧美国产日韩一区二区| 久久久久久9| 欧美日韩一区二区精品| 久久综合色婷婷| 国产精品久久久久久久浪潮网站 | 国产精品国产馆在线真实露脸| 欧美在线网址| 欧美视频观看一区| 亚洲承认在线| 国外成人在线视频| 亚洲一区二区少妇| 一本色道久久综合| 免费观看成人| 蜜桃av一区| 韩国av一区二区三区四区| 亚洲视频久久| 亚洲在线成人| 欧美日韩激情网| 亚洲人成网站777色婷婷| 亚洲国产成人久久综合一区| 久久精品夜色噜噜亚洲a∨| 午夜一区在线| 国产欧美精品xxxx另类| 亚洲一区二区在线看| 亚洲一区二区三区高清| 欧美肉体xxxx裸体137大胆| 91久久亚洲| 亚洲国产专区| 欧美激情第六页| 欧美黄色免费网站| 亚洲国产精品国自产拍av秋霞| 久久精品国亚洲| 你懂的国产精品| 亚洲国产精品久久人人爱蜜臀| 久久亚洲高清| 亚洲电影在线免费观看| 亚洲精品免费一区二区三区| 欧美成人精品三级在线观看| 欧美国产欧美亚州国产日韩mv天天看完整| 狠狠色2019综合网| 久久天天狠狠| 最近中文字幕日韩精品| 一区二区三区蜜桃网| 国产精品美女www爽爽爽| 亚洲伊人网站| 巨乳诱惑日韩免费av| 亚洲欧洲精品成人久久奇米网| 欧美成人免费小视频| 日韩视频免费观看| 性欧美激情精品| 国际精品欧美精品| 免费不卡中文字幕视频| 亚洲精品中文字幕女同| 香蕉尹人综合在线观看| 激情成人亚洲| 欧美日韩国产在线看| 亚洲欧美久久久久一区二区三区| 久久精品理论片| 亚洲日韩视频| 国产精品永久在线| 久久一综合视频| 一区二区三区欧美亚洲| 久久全球大尺度高清视频| 亚洲伦理自拍| 国产综合av| 欧美日本精品一区二区三区| 亚洲欧美另类国产| 欧美+日本+国产+在线a∨观看| 一区二区电影免费观看| 国产精品午夜春色av| 久久最新视频| 亚洲欧美日韩精品| 91久久嫩草影院一区二区| 欧美一区二区网站| 日韩视频在线播放| 国产一区二区激情| 欧美视频在线观看免费| 久久综合九色综合欧美就去吻| 一区二区激情小说| 亚洲国产免费| 久久青草欧美一区二区三区| 亚洲一区精品在线| 亚洲精品视频啊美女在线直播| 国产欧美日韩亚洲精品| 欧美激情在线狂野欧美精品| 欧美在线观看你懂的| 一区二区日韩精品| 亚洲激情午夜| 欧美国产日本| 久久免费99精品久久久久久| 亚洲午夜av在线| 日韩午夜激情电影| 亚洲国产裸拍裸体视频在线观看乱了中文 | 欧美日韩一卡| 亚洲欧美日韩一区二区|