• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            ACM___________________________

            ______________白白の屋
            posts - 182, comments - 102, trackbacks - 0, articles - 0
            <2025年6月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345

            常用鏈接

            留言簿(24)

            隨筆分類(332)

            隨筆檔案(182)

            FRIENDS

            搜索

            積分與排名

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            MiYu原創, 轉帖請注明 : 轉載自 ______________白白の屋    

             

            題目地址:

            http://acm.hdu.edu.cn/showproblem.php?pid=1512

            題目描述 :

            代碼
            Monkey King

            Time Limit: 
            10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
            Total Submission(s): 
            914    Accepted Submission(s): 426


            Problem Description
            Once 
            in a forest, there lived N aggressive monkeys. At the beginning, they each does things in its own way and none of them knows each other. But monkeys can't avoid quarrelling, and it only happens between two monkeys who does not know each other. And when it happens, both the two monkeys will invite the strongest friend of them, and duel. Of course, after the duel, the two monkeys and all of there friends knows each other, and the quarrel above will no longer happens between these monkeys even if they have ever conflicted.

            Assume that every money has a strongness value, which will be reduced to only half of the original after a duel(that 
            is10 will be reduced to 5 and 5 will be reduced to 2).

            And we also assume that every monkey knows himself. That 
            is, when he is the strongest one in all of his friends, he himself will go to duel.
             

            Input
            There are several test cases, and each 
            case consists of two parts.

            First part: The first line contains an integer N(N
            <=100,000), which indicates the number of monkeys. And then N lines follows. There is one number on each line, indicating the strongness value of ith monkey(<=32768).

            Second part: The first line contains an integer M(M
            <=100,000), which indicates there are M conflicts happened. And then M lines follows, each line of which contains two integers x and y, indicating that there is a conflict between the Xth monkey and Yth.

             

            Output
            For each of the conflict, output 
            -1 if the two monkeys know each other, otherwise output the strongness value of the strongest monkey in all friends of them after the duel.
             

            Sample Input
            5
            20
            16
            10
            10
            4
            5
            2 3
            3 4
            3 5
            4 5
            1 5
             

            Sample Output
            8
            5
            5
            -1
            10
             

             

             

            題目分析:

            /*
            Mail to   : miyubai@gamil.com
            My Blog   : www.baiyun.me
            Link      : http://www.cnblogs.com/MiYu  || http://m.shnenglu.com/MiYu
            Author By : MiYu
            Test      : 1
            Complier  : g++ mingw32-3.4.2
            Program   : HDU_1512
            Doc Name  : Monkey King
                
                
            題目意思: 

            有N只猴子, 每只都有一個力量值. 開始的時候互不認識, 它們之間會發生M次斗爭. 每次發生a, b的斗爭時, a, b都會從各自的朋友圈里拉出一個最強的, 之后兩只猴子打, 打完后這兩只猴子的力量值各減半. 并且打完后, 兩只猴子的朋友圈的所有人都互相認識(也就是不會再打).

            你的任務就是對于每個斗爭, 若a, b是朋友, 那么輸出-1, 否則輸出打完后它們的朋友圈的最強猴子的力量值.

             使用 普通 優先隊列的話 估計會超時, 因為數據量很大 100000 ! !, 等下有空試試看. 

            對于每一個節點, 定義dis 表示X節點到最右邊的空節點的距離的最小值

            對于每個節點X, 要求X的左兒子的dis >= 右兒子的dis, 那么容易發現, 對于N個節點的左偏樹, 其右兒子最多只有logN個節點.

            合并操作就是讓復雜度落在右兒子上, 從而達到logN的合并復雜度.

            首先對于兩個堆, 若其中一個為空, 返回另一個.

            否則(這里以大根堆為例), a指向堆頂較大的堆, b指向另一個. 讓a的右兒子和b合并, 合并后的子樹作為a的右兒子.

            接下來, 檢查a的兩個兒子是否滿足dis, 不滿足就交換兩個兒子.

            最后, 更新a的dis.

            這樣就容易實現堆的其他操作 ( 比如插入, 刪除頂等 ).

            另外 還需要用到 并查集.    
                
                
            */
            //#pragma warning( disable:4789 )
            #include <iostream>
            #include <fstream>
            #include <sstream>
            #include <algorithm>
            #include <string>
            #include <set>
            #include <map>
            #include <utility>
            #include <queue>
            #include <stack>
            #include <list>
            #include <vector>
            #include <cstdio>
            #include <cstdlib>
            #include <cstring>
            #include <cmath>
            #include <ctime>
            using namespace std;
            const int MM = 100010;
            struct left {
                    int l,r,dis,val,dad;
            } heap[MM];

            int N, M;

            inline int max ( const int &a, const int &b) {
                   return a > b ? a : b;
            }

            inline int find ( int &x ) {
                return heap[x].dad == x ? x : heap[x].dad = find ( heap[x].dad );
            }

            inline void swap(int &a, int &b) {
                 a ^= b ^= a ^= b;
            }

            inline int merge ( int x, int y ) {
                if ( x == 0 ) return y;
                if ( y == 0 ) return x;
                if ( heap[y].val > heap[x].val ) swap ( x, y );    
                heap[x].r = merge ( heap[x].r, y );
                heap[heap[x].r].dad = x;
                if ( heap[ heap[x].l ].dis < heap[ heap[x].r ].dis ) 
                     swap ( heap[x].l, heap[x].r );
                if ( heap[x].r == 0 ) heap[x].dis = 0;
                else heap[x].dis = heap[ heap[x].r ].dis + 1;
                return x;
            }

            inline int push ( int x, int y ) {
                   return merge ( x, y );       
            }

            inline int pop ( int &x ) {
                   int l = heap[x].l; 
                   int r = heap[x].r; 
                   heap[l].dad = l;
                   heap[r].dad = r;
                   heap[x].l = heap[x].r = heap[x].dis = 0;   
                   return merge ( l, r );  
            }

            inline bool scan_d(int &num) {
                    char in;bool IsN=false;
                    in=getchar();
                    if(in==EOF) return false;
                    while(in!='-'&&(in<'0'||in>'9')) in=getchar();
                    if(in=='-'){ IsN=true;num=0;}
                    else num=in-'0';
                    while(in=getchar(),in>='0'&&in<='9'){
                            num*=10,num+=in-'0';
                    }
                    if(IsN) num=-num;
                    return true;
            }

            int main() {
                while ( scan_d ( N ) ) {
                     for ( int i = 1; i <= N; ++ i ) {
                          scan_d ( heap[i].val );
                          heap[i].l = heap[i].r = heap[i].dis = 0;
                          heap[i].dad = i;    
                     }
                     scan_d ( M );
                     int a, b, x, y;
                     while ( M -- ) {
                            scan_d (a); scan_d (b);
                            x = find ( a );
                            y = find ( b ); 
                            if ( x == y ) {
                                puts ( "-1" );     
                            } else {
                                heap[x].val /= 2;
                                int xx = push ( pop ( x ), x );  
                                heap[y].val /= 2;
                                int yy = push ( pop ( y ), y );  
                                
                                printf ( "%d\n", heap[ merge ( xx, yy ) ].val );      
                            }    
                     } 
                }
                return 0;
            }


             

             

             

            99精品久久精品| 久久久久久久97| 久久免费小视频| 99久久无码一区人妻| 久久久网中文字幕| 亚洲国产另类久久久精品小说| 男女久久久国产一区二区三区| 亚洲综合精品香蕉久久网97| 久久露脸国产精品| 久久久一本精品99久久精品88| 久久亚洲欧美日本精品| 久久免费看黄a级毛片| 久久99国产精一区二区三区| 久久久精品人妻无码专区不卡| 欧美熟妇另类久久久久久不卡 | 久久婷婷五月综合97色一本一本| 欧美一区二区精品久久| 亚洲国产高清精品线久久 | 久久久久久久精品成人热色戒| jizzjizz国产精品久久| 精品久久久一二三区| 久久99精品九九九久久婷婷 | 亚洲精品国产成人99久久| 麻豆精品久久久久久久99蜜桃| 大蕉久久伊人中文字幕| AV无码久久久久不卡蜜桃| 无码任你躁久久久久久老妇App| 精品无码久久久久久国产| 日本精品久久久久中文字幕| 亚洲色婷婷综合久久| 久久精品国产亚洲AV忘忧草18| 久久亚洲色一区二区三区| 成人午夜精品久久久久久久小说| 国产精品久久久久天天影视| 久久人爽人人爽人人片AV| 久久久噜噜噜久久熟女AA片| 亚洲综合伊人久久综合| 无码日韩人妻精品久久蜜桃| 午夜天堂精品久久久久| 人妻无码αv中文字幕久久| 久久人人爽人人爽人人片AV不|