• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            ACM___________________________

            ______________白白の屋
            posts - 182, comments - 102, trackbacks - 0, articles - 0
            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            常用鏈接

            留言簿(24)

            隨筆分類(332)

            隨筆檔案(182)

            FRIENDS

            搜索

            積分與排名

            最新隨筆

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            MiYu原創(chuàng), 轉(zhuǎn)帖請(qǐng)注明 : 轉(zhuǎn)載自 ______________白白の屋    

            題目地址 :

            http://poj.org/problem?id=2528

            題目描述:

            Mayor's posters
            Time Limit: 1000MSMemory Limit: 65536K
            Total Submissions: 15722Accepted: 4444

            Description

            The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules: 
            • Every candidate can place exactly one poster on the wall. 
            • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown). 
            • The wall is divided into segments and the width of each segment is one byte. 
            • Each poster must completely cover a contiguous number of wall segments.

            They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
            Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

            Input

            The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

            Output

            For each input data set print the number of visible posters after all the posters are placed. 

            The picture below illustrates the case of the sample input. 

            Sample Input

            1
            5
            1 4
            2 6
            8 10
            3 4
            7 10
            

            Sample Output

            4

             題目分析 :

            代碼
            /*
               線段樹 +  離散化
                
               好像記得暑假做 樹狀數(shù)組的時(shí)候 做過一個(gè)離散化的題目, 當(dāng)時(shí)是用2分查詢
               離散節(jié)點(diǎn)標(biāo)記的, 速度還是可以的, 不過那時(shí)對(duì)離散化也沒有什么概念, 大
               概是沒怎么接觸, 今天做了這道題目的時(shí)候,  也算是明白了 離散化 的基本
               意思,因?yàn)?nbsp;題目的 數(shù)據(jù)范圍很大 , 1- 10000000,直接線段樹的話, 先不說
               內(nèi)存會(huì)不會(huì)爆, 這么大的范圍估計(jì)也是 TLE了. 
               仔細(xì)讀題, 可以看到  1<= N <= 10000, 也就是說 最多只有 10000個(gè)點(diǎn), 如果
               每個(gè)點(diǎn)都不同, 那么最多也只有 20000 個(gè)數(shù)據(jù), 那么離散后的 范圍就相當(dāng)小;
               
               離散化 的大概思路 :   比如說給你一組 數(shù)據(jù) 1 4 1000 100000,  如果直接
                                     開線段, 顯然是浪費(fèi), 那么我們只要 進(jìn)行 映射 :
                                            1    1  
                                            4    2
                                         1000    3
                                       100000    4
                                     接下來 我們只要對(duì) 1 2 3 4 建立線段樹就行了 只需要
                                     [1,4]的區(qū)間     
            */

            /*
            Mail to   : miyubai@gamil.com
            Link      : 
            http://www.cnblogs.com/MiYu  || http://m.shnenglu.com/MiYu
            Author By : MiYu
            Test      : 1
            Complier  : g++ mingw32-3.4.2
            Program   : 2528
            Doc Name  : Mayor's posters
            */
            //#pragma warning( disable:4789 )
            #include <iostream>
            #include 
            <fstream>
            #include 
            <sstream>
            #include 
            <algorithm>
            #include 
            <string>
            #include 
            <set>
            #include 
            <map>
            #include 
            <utility>
            #include 
            <queue>
            #include 
            <stack>
            #include 
            <list>
            #include 
            <vector>
            #include 
            <cstdio>
            #include 
            <cstdlib>
            #include 
            <cstring>
            #include 
            <cmath>
            #include 
            <ctime>
            using namespace std;
            int T, N, x, y;
            map 
            < intint > mp;
            set <int> st;
            map
            <int,int>::iterator beg, end;
            struct segtree {
                   
            int left, right,cov;
                   
            int mid () { return (left+right)>>1; }
            }seg[
            80010];
            struct P {  //節(jié)點(diǎn)數(shù)據(jù) 
                   int left, right;
            }pp[
            10010];
            void creat ( int x, int y, int rt = 1 ) {
                 seg[rt].left 
            = x;
                 seg[rt].right 
            = y;
                 seg[rt].cov 
            = 0;
                 
            if ( x == y ) return ;
                 
            int mid = seg[rt].mid();
                 creat ( x, mid, rt 
            << 1 );
                 creat ( mid 
            + 1, y, rt << 1 | 1 );     
            }
            void insert ( int x, int y, int flag, int rt = 1 ) {
                 
            //如果線段被覆蓋, 直接標(biāo)記, 返回 
                if ( seg[rt].left == x && seg[rt].right == y ) {
                    seg[rt].cov 
            = flag;
                    
            return;   
                }    
                
            int LL = rt << 1, RR = rt << 1 | 1, mid = seg[rt].mid();
                
            if ( seg[rt].cov != -1 ) {  
                   
            //如果線段是被覆蓋的 , 標(biāo)記下傳, 同時(shí)自身標(biāo)記-1,表示有多個(gè)標(biāo)記 
                    seg[LL].cov = seg[RR].cov = seg[rt].cov;
                    seg[rt].cov 
            = -1;   
                }
                
            //遞歸 插入 
                if ( y <= mid ) insert ( x, y, flag, LL );
                
            else if ( x > mid ) insert ( x, y, flag, RR );
                
            else {
                      insert ( x, mid, flag, LL );
                      insert ( mid 
            + 1, y, flag, RR );     
                }
            }
            void query ( int x, int y, int rt = 1 ) {
                
            // 線段被覆蓋 , 將覆蓋標(biāo)記 放入 set 
                if ( seg[rt].cov != -1 && seg[rt].left == x && seg[rt].right == y ) {
                    st.insert ( seg[rt].cov );
                    
            return ;   
                }
            else {//遞歸查詢 
                      int LL = rt << 1, RR = rt << 1 | 1, mid = seg[rt].mid();
                      
            if ( y <= mid ) query ( x, y, rt << 1 ); 
                      
            else if ( x > mid ) query ( x, y, rt << 1 | 1 );
                      
            else {
                            query ( x, mid, LL );
                            query ( mid 
            + 1, y, RR );     
                      }
                }
            }
            void print () {
                 
            for ( set<int>::iterator it = st.begin(); it != st.end(); ++ it )
                       cout 
            << *it << endl;     
            }
            int main ()
            {
                scanf ( 
            "%d"&T );
                creat ( 
            120010 );
                
            while ( T -- ) {
                       mp.clear();
                       st.clear (); 
                       scanf ( 
            "%d"&N );
                       
            for ( int i = 1; i <= N; ++ i ) {
                            scanf ( 
            "%d%d"&pp[i].left, &pp[i].right );
                             
            //map 去重 
                            mp[pp[i].left] = 88; mp[pp[i].right] = 88;    
                       }      
                       beg 
            = mp.begin(), end = mp.end();
                       
            //因?yàn)閙ap 已經(jīng)自動(dòng)排序了,所以直接從 1 --> N 開始標(biāo)記, 離散化 
                       for ( int i = 1;beg != end; ++ beg, ++ i ) {         
                            beg
            ->second = i;  
                       }
                       
            //因?yàn)榫€段樹已經(jīng)建立好了, 所以沒必要每次都重建一次, 只要插入一條
                       
            //覆蓋所有區(qū)間的 底板 就行了 
                       insert ( 1, N * 20 );
                       
            for ( int i = 1; i <= N; ++ i ) {
                            
            //用離散后的標(biāo)記 插入 線段 
                            insert ( mp[pp[i].left], mp[pp[i].right], i );   
                       }
                       query ( 
            1, N * 2 );
                       
            //print();
                       int cnt = st.size();
                       
            if ( *st.begin() == 0 ) -- cnt; 
                       printf ( 
            "%d\n", cnt );
                }

                
            return 0;
            }

             

            Feedback

            # re: PKU 2528 POJ 2528 Mayor's posters ( 線段樹+離散化 ) ACM 2528 IN PKU  回復(fù)  更多評(píng)論   

            2011-10-19 22:34 by wjjay
            3
            1 10
            1 5
            7 10
            請(qǐng)問這組數(shù)據(jù)在你程序里跑出來的結(jié)果跟你手算的一樣么?
            亚洲精品国产第一综合99久久 | 国产精品久久久久影院嫩草| 91久久精品无码一区二区毛片| 亚洲午夜久久久久久久久久| 性做久久久久久久久老女人| 久久久久国产视频电影| 久久777国产线看观看精品| 久久香综合精品久久伊人| 亚洲欧洲日产国码无码久久99| 一本久久免费视频| 久久伊人精品一区二区三区| 色狠狠久久综合网| 久久久久亚洲国产| 亚洲精品成人久久久| 久久99这里只有精品国产| 国产成年无码久久久免费| 综合久久给合久久狠狠狠97色| 亚洲欧洲精品成人久久曰影片 | 久久国产美女免费观看精品 | 国产一区二区久久久| 欧美国产成人久久精品| 久久人做人爽一区二区三区 | 99久久精品影院老鸭窝| 国产精品青草久久久久婷婷| 国产精品久久久久影视不卡| 99久久99久久精品国产片| 久久精品视频91| 久久精品无码一区二区WWW| 久久久久人妻精品一区| 久久精品国产99国产精品澳门 | 久久亚洲高清综合| 久久精品一本到99热免费| 久久国产精品99国产精| 91久久精品电影| 亚洲欧美日韩精品久久亚洲区| 97精品伊人久久久大香线蕉| 99热成人精品热久久669| 久久露脸国产精品| 日韩AV无码久久一区二区| 久久国产精品国产自线拍免费| 久久婷婷五月综合色99啪ak|