青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

QuXiao

每天進(jìn)步一點(diǎn)點(diǎn)!

  C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
  50 隨筆 :: 0 文章 :: 27 評(píng)論 :: 0 Trackbacks

PKU 1639 Picnic Planning解題報(bào)告

 

分類:

圖論、最小度限制生成樹

 

原題:

Picnic Planning

Time Limit: 5000MS

Memory Limit: 10000K

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form
Total miles driven: xxx
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10

Alphonzo Bernardo 32

Alphonzo Park 57

Alphonzo Eduardo 43

Bernardo Park 19

Bernardo Clemenzi 82

Clemenzi Park 65

Clemenzi Herb 90

Clemenzi Eduardo 109

Park Herb 24

Herb Eduardo 79

3

Sample Output

Total miles driven: 183

 

 

題目大意:

一些人想從各自的家中開車到一個(gè)地方野餐,每個(gè)人的家中都可以容納無限多的車子,每個(gè)人的車子可以容納無限多的人。每個(gè)人可以先開車到另一人家中,將車停在那人家中,兩人(或多人)再開同一輛車開往目的地。但野餐的地方只有有限個(gè)停車位k,告訴你一些路程的長度,問你將所有人都聚集再野餐地點(diǎn),所使用的最短路程是多少。

 

思路:

因?yàn)轭}目中說到,一個(gè)人可以先開車到其他人家中,然后他們?cè)僖黄痖_車前往目的地,所以將問題抽象出來,將各人的家和目的地看作點(diǎn),將各個(gè)路程看作邊,若沒有目的地停車位(點(diǎn)的度)的限制,問題就可以轉(zhuǎn)化為求最小生成樹的問題。但加上了對(duì)某一點(diǎn)度的限制,問題就變得復(fù)雜了。

假設(shè),若我們將度限制條件放在一邊,直接求最小生成樹。如果在最小生成樹中,目的地所在點(diǎn)的度數(shù)已經(jīng)滿足degree <= k,那么度限制生成樹就已經(jīng)得到了。因?yàn)椴豢赡苡斜人鼨?quán)值和更小的生成樹了,并且點(diǎn)的度數(shù)滿足條件。

還有一種情況,那就是先按最小生成樹算法得到的生成樹中,目的地所在點(diǎn)的度數(shù)degree > k,那么很自然的,我們就要想到刪去degree-k條樹中與規(guī)定點(diǎn)相連的邊,使得它滿足度限制要求。每刪去邊之后,都要再加上一條邊,否則圖就會(huì)不連通,但是,又應(yīng)該怎樣刪邊呢?假設(shè),規(guī)定點(diǎn)的度數(shù)為t,那么就有t根與規(guī)定點(diǎn)相連的子樹T1T2、……、Tt,若刪去Ti與規(guī)定點(diǎn)相連的那條邊,Ti這棵子樹就“懸空”了,必須將Ti這棵樹“架”到其他子樹上才可以。經(jīng)過這樣一次的“刪添”操作之后,修改之后的圖仍然是棵樹,但規(guī)定點(diǎn)的度數(shù)減少了1,只要這樣進(jìn)行t-k次,就可以得到滿足條件的度限制生成樹了。但怎樣保證最小呢?只要在每次的“刪添”操作時(shí),保證“添”的邊的權(quán)值減去“刪”的邊的權(quán)值的差值(必大于等于0)最小就可以了。

除了這種方法,lrj的書上還介紹了另一種方法。其大致思想是:現(xiàn)將規(guī)定點(diǎn)以及與它相連的邊都去掉,再在剩下的圖中求出每個(gè)連通分量的最小生成樹,在進(jìn)行“差額最小添刪操作”,求出滿足度限制的情況下的可能的權(quán)值,在其中不斷更新樹的權(quán)值和。具體算法將黑書P300~P303

 

 

代碼:

 

#include <iostream>

#include <map>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

 

const int MAX = 50;

 

struct Edge

{

         int a, b;

         int len;

};

 

vector<Edge> edge;

map<string, int> nameIndex;

int G[MAX][MAX];

int tree[MAX][MAX];

int n, m, k;

int parkIndex;

int degree[MAX];

int treeDegree[MAX];

int p[MAX];

int inTree[MAX];

int rank[MAX];

int minCost;

int treeTag[MAX];             //對(duì)子樹進(jìn)行標(biāo)記

int visited[MAX];

int subTreeNum;

 

bool operator< (Edge e1, Edge e2)

{

         return ( e1.len < e2.len );

}

 

 

void Input ()

{

         string a, b;

         int index1, index2;

         int len;

         Edge e;

         n = 0;

         cin>>m;

         for (int i=0; i<m; i++)

         {

                   cin>>a>>b>>len;

                   if ( nameIndex.find(a) == nameIndex.end() )

                   {

                            nameIndex[a] = n;

                            index1 = n;

                            n ++;

                   }

                   else

                   {

                            index1 = nameIndex[a];

                   }

 

                   if ( nameIndex.find(b) == nameIndex.end() )

                   {

                            nameIndex[b] = n;

                            index2 = n;

                            n ++;

                   }

                   else

                   {

                            index2 = nameIndex[b];

                   }

 

                   if ( a == "Park" )

                            parkIndex = index1;

                   if ( b == "Park" )

                            parkIndex = index2;

                   G[index1][index2] = G[index2][index1] = len;

                   e.a = index1;

                   e.b = index2;

                   e.len = len;

                   edge.push_back(e);

                   degree[index1] ++;

                   degree[index2] ++;

         }

 

         cin>>k;

}

 

int Find (int x)

{

    int t, root, w;

    t = x;

    while ( p[t] != -1 )

                   t = p[t];

    root = t;

    t = x;

    while ( p[t] != -1 )

    {

                   w = p[t];

                   p[t] = root;

                   t = w;

    }

        

    return root;

}

 

void Union (int x, int y)

{

         int r1, r2;

         r1 = Find(x);

         r2 = Find(y);

        

         if ( rank[r1] >= rank[r2] )

         {

                   p[r2] = r1;

                   if ( rank[r1] == rank[r2] )

                            rank[r1]++;

         }

         else

                   p[r1] = r2;

}

 

 

bool Kruskal ()

{

         int i, r1, r2, k, total, Max;

         memset(p, -1, sizeof(p));

         memset(inTree, 0, sizeof(inTree));

         memset(rank, 1, sizeof(rank));

         //qsort(edge, edgeNum, sizeof(edge[0]), cmp);

         sort(edge.begin(), edge.end());

 

    Max = -1;

         k = 0;

         minCost = 0;

         for (i=0; i<edge.size() && k<n-1; i++)

         {

 

                   r1 = Find(edge[i].a);

                   r2 = Find(edge[i].b);

                   if ( r1 != r2 )

                   {

                            tree[edge[i].a][edge[i].b] = tree[edge[i].b][edge[i].a] = edge[i].len;

                            //cout<<edge[i].a<<' '<<edge[i].b<<endl;

                            Union(r1, r2);

                            inTree[i] = 1;

                            treeDegree[edge[i].a] ++;

                            treeDegree[edge[i].b] ++;

                            k++;

                            minCost += edge[i].len;

                   }

         }

 

 

         if ( k == n - 1 )

        return true;

         else

                   return false;

}

 

 

void DFS (int cur, int index)

{

         visited[cur] = 1;

         treeTag[cur] = index;

         int i;

         for (i=0; i<n; i++)

         {

                   if ( tree[cur][i] && !visited[i] )

                   {

                            DFS (i, index);

                   }

         }

}

 

void MakeTreeTag ()

{

         int i;

         subTreeNum = 0;

         memset(visited, 0, sizeof(visited));

         visited[parkIndex] = 1;

         memset(treeTag, -1, sizeof(treeTag));

         for (i=0; i<n; i++)

         {

                   if ( tree[parkIndex][i] )

                            DFS (i, subTreeNum++);

         }

}

 

//將原來的子樹架在另一棵樹上

void ChangeTreeTag (int pre, int cur)

{

         int i;

         for (i=0; i<n; i++)

                   if ( treeTag[i] == pre )

                            treeTag[i] = cur;

}

 

//從當(dāng)前子樹查找與其他子樹相連的最小邊

Edge FindMinEdge (int curTag)

{

         int i;

         Edge e;

         e.len = -1;

         for (i=0; i<edge.size(); i++)

         {

                   if ( ((treeTag[edge[i].a] == curTag && treeTag[edge[i].b] != curTag && edge[i].b != parkIndex)

                            || (treeTag[edge[i].b] == curTag && treeTag[edge[i].a] != curTag && edge[i].a != parkIndex) )

                            && G[edge[i].a][edge[i].b] )

                   {

                            if ( e.len == -1 || edge[i].len < e.len )

                            {

                                     e.a = edge[i].a;

                                     e.b = edge[i].b;

                                     e.len = edge[i].len;

                            }

                   }

         }

         return e;

}

 

 

void DeleteAdd ()

{

         int i, minDif, delTag, newTag;

         minDif = -1;

         Edge addEdge, delEdge, temp;

         for (i=0; i<n; i++)

         {

                   if ( i == parkIndex )

                            continue;

                   temp = FindMinEdge(treeTag[i]);

                   if ( temp.len == -1 )

                            continue;

                   if ( tree[parkIndex][i] && ( minDif == -1 || temp.len - tree[parkIndex][i] < minDif) )

                   {

                            minDif = temp.len - tree[parkIndex][i];

                            addEdge = temp;

                            delEdge.a = parkIndex;

                            delEdge.b = i;

                            delTag = treeTag[i];

                            if ( treeTag[addEdge.a] != delTag )

                                     newTag = treeTag[addEdge.a];

                            else

                                     newTag = treeTag[addEdge.b];

                   }

         }

 

         tree[delEdge.a][delEdge.b] = tree[delEdge.b][delEdge.a] = 0;

         G[delEdge.a][delEdge.b] = G[delEdge.b][delEdge.a] = 0;

         tree[addEdge.a][addEdge.b] = tree[addEdge.b][addEdge.a] = addEdge.len;

        

         minCost += minDif;

 

         ChangeTreeTag(delTag, newTag);

}

 

 

void Solve ()

{

         Kruskal();

         if ( treeDegree[parkIndex] <= k )

         {

                   cout<<"Total miles driven: "<<minCost<<endl;

                   return;

         }

 

         MakeTreeTag ();

 

         int i;

         for (i=0; i<treeDegree[parkIndex]-k; i++)

                   DeleteAdd();

 

         cout<<"Total miles driven: "<<minCost<<endl;

}

 

int main ()

{

         Input ();

         Solve ();

 

         return 0;

}

posted on 2008-07-30 19:10 quxiao 閱讀(976) 評(píng)論(1)  編輯 收藏 引用 所屬分類: ACM

評(píng)論

# re: PKU 1639 Picnic Planning 2011-03-28 19:28 Chengsir
如果單單從算法來考慮,要求求的是根的出度剛好為 k的最小生成樹,那應(yīng)該怎么求呀/.  回復(fù)  更多評(píng)論
  

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲日韩第九十九页| 免费成人av资源网| 国产精品v亚洲精品v日韩精品| 亚洲福利国产| 女生裸体视频一区二区三区| 久久视频精品在线| 久久久国产视频91| 久久男人资源视频| 欧美电影免费观看| 免费在线亚洲| 亚洲国产高清自拍| 日韩视频亚洲视频| 中文欧美日韩| 久久9热精品视频| 久久亚洲美女| 欧美jizzhd精品欧美巨大免费| 久久综合狠狠综合久久激情| 暖暖成人免费视频| 国产精品扒开腿做爽爽爽视频 | 欧美成人免费视频| 欧美片在线播放| 国产精品二区在线| 激情久久久久久久| 日韩一区二区精品葵司在线| 亚洲网站视频福利| 久久激情中文| 亚洲精品美女在线观看播放| 亚洲欧美一区二区三区极速播放 | 伊人婷婷欧美激情| 日韩午夜三级在线| 欧美一区二区三区四区夜夜大片| 蜜桃精品久久久久久久免费影院| 亚洲精品欧美日韩| 国产一区二区久久| 国产日本欧美一区二区| 亚洲高清自拍| 亚洲一区二区高清视频| 久久久久久9999| 99re成人精品视频| 久久综合狠狠综合久久综合88| 欧美日韩国产精品| 有码中文亚洲精品| 欧美一区二区三区在线看| 欧美电影打屁股sp| 欧美一区二区三区婷婷月色| 欧美色欧美亚洲高清在线视频| 黄网动漫久久久| 午夜精品网站| 99精品国产高清一区二区| 久久麻豆一区二区| 国产日本欧美一区二区| 亚洲一区二区欧美日韩| 女同性一区二区三区人了人一| 亚洲欧美日韩在线高清直播| 欧美日韩精品免费观看视一区二区 | 亚洲激情网站| 玖玖精品视频| 欧美影院午夜播放| 国产视频欧美视频| 欧美在线视频一区二区| 亚洲天堂av电影| 国产精品sss| 在线中文字幕一区| 亚洲精品视频免费观看| 老司机成人在线视频| 狠狠色狠狠色综合| 久久久久久亚洲精品杨幂换脸 | 久久久爽爽爽美女图片| 亚洲欧美在线免费| 国产曰批免费观看久久久| 久久不射电影网| 欧美一区二区三区喷汁尤物| 国产热re99久久6国产精品| 午夜精品一区二区三区四区| 亚洲一区在线直播| 国产欧美日韩伦理| 久久久在线视频| 久久青草欧美一区二区三区| 久久不射中文字幕| 亚洲一二三级电影| 国产精品午夜电影| 久久久精品动漫| 久久综合九色| 亚洲一区二区视频在线观看| 国产日韩欧美在线看| 9色精品在线| 亚洲精品视频在线观看网站| 欧美巨乳在线| 亚洲永久免费| 久久超碰97中文字幕| 136国产福利精品导航| 亚洲黄色一区| 久久国产精品久久w女人spa| 亚洲成人影音| 99这里只有精品| 国产日韩久久| 91久久精品网| 国产精自产拍久久久久久| 久久综合给合| 欧美日韩亚洲一区在线观看| 欧美一区午夜视频在线观看| 久久免费精品视频| 亚洲一区二区三区高清不卡| 欧美在线免费| 一区二区欧美在线| 久久精品99久久香蕉国产色戒| 亚洲韩日在线| 亚洲影视在线| 亚洲九九九在线观看| 亚洲综合社区| 99国产精品久久久久久久久久| 亚洲欧美精品中文字幕在线| 亚洲电影视频在线| 亚洲一区二区三区在线播放| 亚洲国产日韩在线一区模特| 亚洲一品av免费观看| 亚洲第一福利在线观看| 亚洲一区二区精品| 亚洲精品视频二区| 久久精品国产99国产精品澳门| 中日韩视频在线观看| 久久一区二区三区超碰国产精品| 亚洲五月婷婷| 欧美成年人视频网站| 久久久精品性| 国产精品一区二区三区久久久| 亚洲精品国产日韩| 亚洲国产天堂久久综合| 欧美一区二区三区视频| 亚洲一区三区视频在线观看| 欧美成人午夜免费视在线看片| 久久久国产一区二区| 久久夜色精品一区| 国产精品久久网站| 日韩视频在线永久播放| 亚洲人成欧美中文字幕| 久久夜色精品国产亚洲aⅴ| 久久久久久久久伊人| 国产精品自在欧美一区| 亚洲国产精品久久91精品| 国产精品99久久99久久久二8| 亚洲人精品午夜| 亚洲美女av网站| 美国成人毛片| 欧美激情一区二区三区不卡| 狠狠色综合播放一区二区| 欧美亚洲一区二区在线观看| 亚洲国产黄色| 欧美日韩国产在线观看| 午夜精品一区二区在线观看 | 欧美一区二区黄色| 欧美日韩一区二区三区免费看| 亚洲高清自拍| 亚洲免费观看高清完整版在线观看熊 | 国产精品五月天| 亚洲影视九九影院在线观看| 欧美在线www| 国产亚洲激情| 久久人人97超碰国产公开结果| 欧美国产成人在线| 夜夜精品视频| 国产欧美在线看| 美女黄毛**国产精品啪啪| 亚洲免费av网站| 久久久久国产精品麻豆ai换脸| 18成人免费观看视频| 欧美色区777第一页| 欧美一区激情视频在线观看| 亚洲国产精品123| 亚洲综合日韩在线| 狠狠色丁香久久综合频道 | 亚洲一区二区三区乱码aⅴ| 久久久国产精品亚洲一区| 亚洲精品久久7777| 国产美女精品免费电影| 欧美成人免费网| 亚洲欧美成人一区二区三区| 久久综合亚州| 亚洲欧美国产视频| 精品盗摄一区二区三区| 欧美午夜在线观看| 免费成人在线观看视频| 国产精品99久久久久久有的能看 | 亚洲一区二区三区四区中文| 国产精品免费网站| 性视频1819p久久| 国产热re99久久6国产精品| 欧美国产视频一区二区| 久久免费国产精品| 亚洲手机在线| 欧美日韩黄色一区二区| 日韩系列在线| 91久久线看在观草草青青| 亚洲精品日韩在线观看| 欧美黄色网络| 欧美+日本+国产+在线a∨观看| 亚洲专区在线| 国产麻豆视频精品| 亚洲欧美日韩一区二区三区在线| 一本一道久久综合狠狠老精东影业|