青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

QuXiao

每天進(jìn)步一點點!

  C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
  50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

PKU 1639 Picnic Planning解題報告

 

分類:

圖論、最小度限制生成樹

 

原題:

Picnic Planning

Time Limit: 5000MS

Memory Limit: 10000K

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form
Total miles driven: xxx
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10

Alphonzo Bernardo 32

Alphonzo Park 57

Alphonzo Eduardo 43

Bernardo Park 19

Bernardo Clemenzi 82

Clemenzi Park 65

Clemenzi Herb 90

Clemenzi Eduardo 109

Park Herb 24

Herb Eduardo 79

3

Sample Output

Total miles driven: 183

 

 

題目大意:

一些人想從各自的家中開車到一個地方野餐,每個人的家中都可以容納無限多的車子,每個人的車子可以容納無限多的人。每個人可以先開車到另一人家中,將車停在那人家中,兩人(或多人)再開同一輛車開往目的地。但野餐的地方只有有限個停車位k,告訴你一些路程的長度,問你將所有人都聚集再野餐地點,所使用的最短路程是多少。

 

思路:

因為題目中說到,一個人可以先開車到其他人家中,然后他們再一起開車前往目的地,所以將問題抽象出來,將各人的家和目的地看作點,將各個路程看作邊,若沒有目的地停車位(點的度)的限制,問題就可以轉(zhuǎn)化為求最小生成樹的問題。但加上了對某一點度的限制,問題就變得復(fù)雜了。

假設(shè),若我們將度限制條件放在一邊,直接求最小生成樹。如果在最小生成樹中,目的地所在點的度數(shù)已經(jīng)滿足degree <= k,那么度限制生成樹就已經(jīng)得到了。因為不可能有比它權(quán)值和更小的生成樹了,并且點的度數(shù)滿足條件。

還有一種情況,那就是先按最小生成樹算法得到的生成樹中,目的地所在點的度數(shù)degree > k,那么很自然的,我們就要想到刪去degree-k條樹中與規(guī)定點相連的邊,使得它滿足度限制要求。每刪去邊之后,都要再加上一條邊,否則圖就會不連通,但是,又應(yīng)該怎樣刪邊呢?假設(shè),規(guī)定點的度數(shù)為t,那么就有t根與規(guī)定點相連的子樹T1T2、……、Tt,若刪去Ti與規(guī)定點相連的那條邊,Ti這棵子樹就“懸空”了,必須將Ti這棵樹“架”到其他子樹上才可以。經(jīng)過這樣一次的“刪添”操作之后,修改之后的圖仍然是棵樹,但規(guī)定點的度數(shù)減少了1,只要這樣進(jìn)行t-k次,就可以得到滿足條件的度限制生成樹了。但怎樣保證最小呢?只要在每次的“刪添”操作時,保證“添”的邊的權(quán)值減去“刪”的邊的權(quán)值的差值(必大于等于0)最小就可以了。

除了這種方法,lrj的書上還介紹了另一種方法。其大致思想是:現(xiàn)將規(guī)定點以及與它相連的邊都去掉,再在剩下的圖中求出每個連通分量的最小生成樹,在進(jìn)行“差額最小添刪操作”,求出滿足度限制的情況下的可能的權(quán)值,在其中不斷更新樹的權(quán)值和。具體算法將黑書P300~P303

 

 

代碼:

 

#include <iostream>

#include <map>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

 

const int MAX = 50;

 

struct Edge

{

         int a, b;

         int len;

};

 

vector<Edge> edge;

map<string, int> nameIndex;

int G[MAX][MAX];

int tree[MAX][MAX];

int n, m, k;

int parkIndex;

int degree[MAX];

int treeDegree[MAX];

int p[MAX];

int inTree[MAX];

int rank[MAX];

int minCost;

int treeTag[MAX];             //對子樹進(jìn)行標(biāo)記

int visited[MAX];

int subTreeNum;

 

bool operator< (Edge e1, Edge e2)

{

         return ( e1.len < e2.len );

}

 

 

void Input ()

{

         string a, b;

         int index1, index2;

         int len;

         Edge e;

         n = 0;

         cin>>m;

         for (int i=0; i<m; i++)

         {

                   cin>>a>>b>>len;

                   if ( nameIndex.find(a) == nameIndex.end() )

                   {

                            nameIndex[a] = n;

                            index1 = n;

                            n ++;

                   }

                   else

                   {

                            index1 = nameIndex[a];

                   }

 

                   if ( nameIndex.find(b) == nameIndex.end() )

                   {

                            nameIndex[b] = n;

                            index2 = n;

                            n ++;

                   }

                   else

                   {

                            index2 = nameIndex[b];

                   }

 

                   if ( a == "Park" )

                            parkIndex = index1;

                   if ( b == "Park" )

                            parkIndex = index2;

                   G[index1][index2] = G[index2][index1] = len;

                   e.a = index1;

                   e.b = index2;

                   e.len = len;

                   edge.push_back(e);

                   degree[index1] ++;

                   degree[index2] ++;

         }

 

         cin>>k;

}

 

int Find (int x)

{

    int t, root, w;

    t = x;

    while ( p[t] != -1 )

                   t = p[t];

    root = t;

    t = x;

    while ( p[t] != -1 )

    {

                   w = p[t];

                   p[t] = root;

                   t = w;

    }

        

    return root;

}

 

void Union (int x, int y)

{

         int r1, r2;

         r1 = Find(x);

         r2 = Find(y);

        

         if ( rank[r1] >= rank[r2] )

         {

                   p[r2] = r1;

                   if ( rank[r1] == rank[r2] )

                            rank[r1]++;

         }

         else

                   p[r1] = r2;

}

 

 

bool Kruskal ()

{

         int i, r1, r2, k, total, Max;

         memset(p, -1, sizeof(p));

         memset(inTree, 0, sizeof(inTree));

         memset(rank, 1, sizeof(rank));

         //qsort(edge, edgeNum, sizeof(edge[0]), cmp);

         sort(edge.begin(), edge.end());

 

    Max = -1;

         k = 0;

         minCost = 0;

         for (i=0; i<edge.size() && k<n-1; i++)

         {

 

                   r1 = Find(edge[i].a);

                   r2 = Find(edge[i].b);

                   if ( r1 != r2 )

                   {

                            tree[edge[i].a][edge[i].b] = tree[edge[i].b][edge[i].a] = edge[i].len;

                            //cout<<edge[i].a<<' '<<edge[i].b<<endl;

                            Union(r1, r2);

                            inTree[i] = 1;

                            treeDegree[edge[i].a] ++;

                            treeDegree[edge[i].b] ++;

                            k++;

                            minCost += edge[i].len;

                   }

         }

 

 

         if ( k == n - 1 )

        return true;

         else

                   return false;

}

 

 

void DFS (int cur, int index)

{

         visited[cur] = 1;

         treeTag[cur] = index;

         int i;

         for (i=0; i<n; i++)

         {

                   if ( tree[cur][i] && !visited[i] )

                   {

                            DFS (i, index);

                   }

         }

}

 

void MakeTreeTag ()

{

         int i;

         subTreeNum = 0;

         memset(visited, 0, sizeof(visited));

         visited[parkIndex] = 1;

         memset(treeTag, -1, sizeof(treeTag));

         for (i=0; i<n; i++)

         {

                   if ( tree[parkIndex][i] )

                            DFS (i, subTreeNum++);

         }

}

 

//將原來的子樹架在另一棵樹上

void ChangeTreeTag (int pre, int cur)

{

         int i;

         for (i=0; i<n; i++)

                   if ( treeTag[i] == pre )

                            treeTag[i] = cur;

}

 

//從當(dāng)前子樹查找與其他子樹相連的最小邊

Edge FindMinEdge (int curTag)

{

         int i;

         Edge e;

         e.len = -1;

         for (i=0; i<edge.size(); i++)

         {

                   if ( ((treeTag[edge[i].a] == curTag && treeTag[edge[i].b] != curTag && edge[i].b != parkIndex)

                            || (treeTag[edge[i].b] == curTag && treeTag[edge[i].a] != curTag && edge[i].a != parkIndex) )

                            && G[edge[i].a][edge[i].b] )

                   {

                            if ( e.len == -1 || edge[i].len < e.len )

                            {

                                     e.a = edge[i].a;

                                     e.b = edge[i].b;

                                     e.len = edge[i].len;

                            }

                   }

         }

         return e;

}

 

 

void DeleteAdd ()

{

         int i, minDif, delTag, newTag;

         minDif = -1;

         Edge addEdge, delEdge, temp;

         for (i=0; i<n; i++)

         {

                   if ( i == parkIndex )

                            continue;

                   temp = FindMinEdge(treeTag[i]);

                   if ( temp.len == -1 )

                            continue;

                   if ( tree[parkIndex][i] && ( minDif == -1 || temp.len - tree[parkIndex][i] < minDif) )

                   {

                            minDif = temp.len - tree[parkIndex][i];

                            addEdge = temp;

                            delEdge.a = parkIndex;

                            delEdge.b = i;

                            delTag = treeTag[i];

                            if ( treeTag[addEdge.a] != delTag )

                                     newTag = treeTag[addEdge.a];

                            else

                                     newTag = treeTag[addEdge.b];

                   }

         }

 

         tree[delEdge.a][delEdge.b] = tree[delEdge.b][delEdge.a] = 0;

         G[delEdge.a][delEdge.b] = G[delEdge.b][delEdge.a] = 0;

         tree[addEdge.a][addEdge.b] = tree[addEdge.b][addEdge.a] = addEdge.len;

        

         minCost += minDif;

 

         ChangeTreeTag(delTag, newTag);

}

 

 

void Solve ()

{

         Kruskal();

         if ( treeDegree[parkIndex] <= k )

         {

                   cout<<"Total miles driven: "<<minCost<<endl;

                   return;

         }

 

         MakeTreeTag ();

 

         int i;

         for (i=0; i<treeDegree[parkIndex]-k; i++)

                   DeleteAdd();

 

         cout<<"Total miles driven: "<<minCost<<endl;

}

 

int main ()

{

         Input ();

         Solve ();

 

         return 0;

}

posted on 2008-07-30 19:10 quxiao 閱讀(979) 評論(1)  編輯 收藏 引用 所屬分類: ACM

評論

# re: PKU 1639 Picnic Planning 2011-03-28 19:28 Chengsir
如果單單從算法來考慮,要求求的是根的出度剛好為 k的最小生成樹,那應(yīng)該怎么求呀/.  回復(fù)  更多評論
  

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲精品视频一区| 亚洲人精品午夜| 久久国产日本精品| 欧美黑人在线播放| 一本色道久久综合狠狠躁篇的优点 | 亚洲欧洲一区| 99成人在线| 国产九九视频一区二区三区| 欧美有码视频| 亚洲第一在线| 亚洲欧美日韩人成在线播放| 国产综合精品| 欧美成人免费在线观看| 一片黄亚洲嫩模| 久久久777| 一本到高清视频免费精品| 国产精品激情av在线播放| 久久国产精品72免费观看| 亚洲激情偷拍| 久久久99国产精品免费| 亚洲人成在线播放网站岛国| 国产精品亚洲综合久久| 久久综合一区二区| 亚洲一区二区在| 欧美国产精品中文字幕| 亚洲欧美日韩一区二区| 在线精品国精品国产尤物884a| 欧美日韩国产精品成人| 久久国产一二区| 99国内精品| 欧美成人日韩| 欧美一区二区三区喷汁尤物| 91久久极品少妇xxxxⅹ软件| 国产欧美精品| 欧美日韩日本网| 久久久久久久久久久久久女国产乱 | 亚洲精品影视在线观看| 久久最新视频| 亚洲男女自偷自拍| 亚洲人屁股眼子交8| 国产一区二区主播在线| 欧美日韩精品三区| 久久五月激情| 午夜精品网站| 亚洲私人影院| 最新高清无码专区| 欧美fxxxxxx另类| 久久aⅴ国产欧美74aaa| 亚洲午夜精品一区二区| 亚洲欧洲日本一区二区三区| 国外成人免费视频| 国产精品一区二区三区久久久| 欧美精品www| 男女激情久久| 久久久综合网站| 欧美在线观看视频| 亚洲欧美久久久| 中文国产一区| 一本大道久久精品懂色aⅴ| 亚洲二区精品| 亚洲国产成人精品女人久久久 | 国内精品久久久| 国产九九精品视频| 欧美亚洲第一区| 欧美视频中文一区二区三区在线观看| 欧美精品播放| 欧美另类一区| 欧美另类在线播放| 欧美精品一区二区三区在线看午夜 | 午夜亚洲影视| 午夜综合激情| 欧美一区网站| 久久精品青青大伊人av| 久久福利毛片| 麻豆精品在线观看| 欧美国产欧美亚洲国产日韩mv天天看完整 | 亚洲国产精品电影在线观看| 欧美电影在线观看| 欧美激情第一页xxx| 亚洲国产精品va在线看黑人| 亚洲国产毛片完整版 | 欧美自拍丝袜亚洲| 久久亚洲欧洲| 免费欧美视频| 亚洲黄页一区| 99精品久久久| 亚洲摸下面视频| 久久国产精品99精品国产| 久久久精品2019中文字幕神马| 久久国产精品久久精品国产| 久久亚洲高清| 欧美日韩高清在线观看| 国产精品嫩草影院一区二区| 国精品一区二区| 亚洲精品国产精品国自产观看浪潮 | 日韩网站在线观看| 亚洲永久精品国产| 欧美中文在线观看国产| 免费欧美电影| 国产精品久久久久永久免费观看| 国产主播喷水一区二区| 亚洲日本激情| 亚洲欧美久久| 欧美成人免费全部| 在线视频日韩精品| 久久狠狠亚洲综合| 欧美激情欧美狂野欧美精品 | 久久另类ts人妖一区二区| 亚洲电影观看| 亚洲综合精品自拍| 久久在线观看视频| 国产精品国产三级国产专播精品人 | 久久看片网站| 国产精品久久国产精麻豆99网站| 国产一区二区中文字幕免费看| 亚洲精品在线观看视频| 久久精品国产精品亚洲综合| 亚洲日本成人女熟在线观看| 欧美一区二区精品| 欧美日韩亚洲一区二区三区在线 | 国产一区 二区 三区一级| 亚洲区在线播放| 欧美在线视频日韩| 亚洲激情在线| 久久成人精品电影| 国产精品videossex久久发布| 在线观看国产欧美| 欧美亚洲免费高清在线观看| 亚洲人成网站在线观看播放| 久久国产视频网| 国产精品婷婷| 99国产精品视频免费观看一公开| 久久精品视频在线播放| 亚洲最新在线| 欧美成年人视频网站欧美| 国产手机视频一区二区| 亚洲一区尤物| 亚洲欧洲一区二区三区| 老司机午夜精品视频| 国产精品一区二区三区四区| 夜夜嗨av一区二区三区四季av| 麻豆av福利av久久av| 欧美亚洲综合在线| 国产精品国产a| 一区二区三区四区蜜桃| 欧美激情一二区| 老司机精品福利视频| 一区免费观看| 久久久噜噜噜久久| 欧美在线免费一级片| 国产欧美在线视频| 篠田优中文在线播放第一区| 夜夜嗨av一区二区三区| 欧美日韩三级电影在线| 夜夜嗨av一区二区三区免费区| 亚洲国产精品t66y| 欧美黑人国产人伦爽爽爽| 亚洲国产精品123| 欧美成人亚洲成人| 免费日韩精品中文字幕视频在线| 黄色av成人| 久久亚洲春色中文字幕| 久久国产精品99精品国产| 国内精品模特av私拍在线观看 | 欧美~级网站不卡| 久久影视精品| 亚洲国产一区二区三区在线播 | 在线精品视频一区二区| 欧美电影在线观看| 欧美成人自拍| 中文在线不卡视频| 亚洲无毛电影| 国产日韩欧美一区二区三区在线观看| 欧美一区日韩一区| 久久国产一二区| 亚洲国产高清在线观看视频| 亚洲国产日韩美| 欧美三区在线视频| 先锋影音久久久| 香蕉久久久久久久av网站| 狠狠色综合一区二区| 欧美激情在线狂野欧美精品| 欧美激情一区二区三级高清视频| 一区二区欧美亚洲| 亚洲一区二区四区| 狠狠色狠狠色综合日日五| 欧美激情精品久久久久| 欧美日韩视频在线| 欧美一区深夜视频| 久久这里只有| 亚洲少妇自拍| 久久久久久久999精品视频| 亚洲免费av网站| 亚洲综合欧美日韩| 在线日韩中文| 夜夜嗨av色一区二区不卡| 国产一区二区三区免费不卡 | 久久精品国产一区二区电影| 美国成人直播| 亚洲一区视频在线观看视频|