青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

QuXiao

每天進步一點點!

  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
  50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

PKU 1639 Picnic Planning解題報告

 

分類:

圖論、最小度限制生成樹

 

原題:

Picnic Planning

Time Limit: 5000MS

Memory Limit: 10000K

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form
Total miles driven: xxx
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10

Alphonzo Bernardo 32

Alphonzo Park 57

Alphonzo Eduardo 43

Bernardo Park 19

Bernardo Clemenzi 82

Clemenzi Park 65

Clemenzi Herb 90

Clemenzi Eduardo 109

Park Herb 24

Herb Eduardo 79

3

Sample Output

Total miles driven: 183

 

 

題目大意:

一些人想從各自的家中開車到一個地方野餐,每個人的家中都可以容納無限多的車子,每個人的車子可以容納無限多的人。每個人可以先開車到另一人家中,將車停在那人家中,兩人(或多人)再開同一輛車開往目的地。但野餐的地方只有有限個停車位k,告訴你一些路程的長度,問你將所有人都聚集再野餐地點,所使用的最短路程是多少。

 

思路:

因為題目中說到,一個人可以先開車到其他人家中,然后他們再一起開車前往目的地,所以將問題抽象出來,將各人的家和目的地看作點,將各個路程看作邊,若沒有目的地停車位(點的度)的限制,問題就可以轉化為求最小生成樹的問題。但加上了對某一點度的限制,問題就變得復雜了。

假設,若我們將度限制條件放在一邊,直接求最小生成樹。如果在最小生成樹中,目的地所在點的度數已經滿足degree <= k,那么度限制生成樹就已經得到了。因為不可能有比它權值和更小的生成樹了,并且點的度數滿足條件。

還有一種情況,那就是先按最小生成樹算法得到的生成樹中,目的地所在點的度數degree > k,那么很自然的,我們就要想到刪去degree-k條樹中與規定點相連的邊,使得它滿足度限制要求。每刪去邊之后,都要再加上一條邊,否則圖就會不連通,但是,又應該怎樣刪邊呢?假設,規定點的度數為t,那么就有t根與規定點相連的子樹T1T2、……、Tt,若刪去Ti與規定點相連的那條邊,Ti這棵子樹就“懸空”了,必須將Ti這棵樹“架”到其他子樹上才可以。經過這樣一次的“刪添”操作之后,修改之后的圖仍然是棵樹,但規定點的度數減少了1,只要這樣進行t-k次,就可以得到滿足條件的度限制生成樹了。但怎樣保證最小呢?只要在每次的“刪添”操作時,保證“添”的邊的權值減去“刪”的邊的權值的差值(必大于等于0)最小就可以了。

除了這種方法,lrj的書上還介紹了另一種方法。其大致思想是:現將規定點以及與它相連的邊都去掉,再在剩下的圖中求出每個連通分量的最小生成樹,在進行“差額最小添刪操作”,求出滿足度限制的情況下的可能的權值,在其中不斷更新樹的權值和。具體算法將黑書P300~P303

 

 

代碼:

 

#include <iostream>

#include <map>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

 

const int MAX = 50;

 

struct Edge

{

         int a, b;

         int len;

};

 

vector<Edge> edge;

map<string, int> nameIndex;

int G[MAX][MAX];

int tree[MAX][MAX];

int n, m, k;

int parkIndex;

int degree[MAX];

int treeDegree[MAX];

int p[MAX];

int inTree[MAX];

int rank[MAX];

int minCost;

int treeTag[MAX];             //對子樹進行標記

int visited[MAX];

int subTreeNum;

 

bool operator< (Edge e1, Edge e2)

{

         return ( e1.len < e2.len );

}

 

 

void Input ()

{

         string a, b;

         int index1, index2;

         int len;

         Edge e;

         n = 0;

         cin>>m;

         for (int i=0; i<m; i++)

         {

                   cin>>a>>b>>len;

                   if ( nameIndex.find(a) == nameIndex.end() )

                   {

                            nameIndex[a] = n;

                            index1 = n;

                            n ++;

                   }

                   else

                   {

                            index1 = nameIndex[a];

                   }

 

                   if ( nameIndex.find(b) == nameIndex.end() )

                   {

                            nameIndex[b] = n;

                            index2 = n;

                            n ++;

                   }

                   else

                   {

                            index2 = nameIndex[b];

                   }

 

                   if ( a == "Park" )

                            parkIndex = index1;

                   if ( b == "Park" )

                            parkIndex = index2;

                   G[index1][index2] = G[index2][index1] = len;

                   e.a = index1;

                   e.b = index2;

                   e.len = len;

                   edge.push_back(e);

                   degree[index1] ++;

                   degree[index2] ++;

         }

 

         cin>>k;

}

 

int Find (int x)

{

    int t, root, w;

    t = x;

    while ( p[t] != -1 )

                   t = p[t];

    root = t;

    t = x;

    while ( p[t] != -1 )

    {

                   w = p[t];

                   p[t] = root;

                   t = w;

    }

        

    return root;

}

 

void Union (int x, int y)

{

         int r1, r2;

         r1 = Find(x);

         r2 = Find(y);

        

         if ( rank[r1] >= rank[r2] )

         {

                   p[r2] = r1;

                   if ( rank[r1] == rank[r2] )

                            rank[r1]++;

         }

         else

                   p[r1] = r2;

}

 

 

bool Kruskal ()

{

         int i, r1, r2, k, total, Max;

         memset(p, -1, sizeof(p));

         memset(inTree, 0, sizeof(inTree));

         memset(rank, 1, sizeof(rank));

         //qsort(edge, edgeNum, sizeof(edge[0]), cmp);

         sort(edge.begin(), edge.end());

 

    Max = -1;

         k = 0;

         minCost = 0;

         for (i=0; i<edge.size() && k<n-1; i++)

         {

 

                   r1 = Find(edge[i].a);

                   r2 = Find(edge[i].b);

                   if ( r1 != r2 )

                   {

                            tree[edge[i].a][edge[i].b] = tree[edge[i].b][edge[i].a] = edge[i].len;

                            //cout<<edge[i].a<<' '<<edge[i].b<<endl;

                            Union(r1, r2);

                            inTree[i] = 1;

                            treeDegree[edge[i].a] ++;

                            treeDegree[edge[i].b] ++;

                            k++;

                            minCost += edge[i].len;

                   }

         }

 

 

         if ( k == n - 1 )

        return true;

         else

                   return false;

}

 

 

void DFS (int cur, int index)

{

         visited[cur] = 1;

         treeTag[cur] = index;

         int i;

         for (i=0; i<n; i++)

         {

                   if ( tree[cur][i] && !visited[i] )

                   {

                            DFS (i, index);

                   }

         }

}

 

void MakeTreeTag ()

{

         int i;

         subTreeNum = 0;

         memset(visited, 0, sizeof(visited));

         visited[parkIndex] = 1;

         memset(treeTag, -1, sizeof(treeTag));

         for (i=0; i<n; i++)

         {

                   if ( tree[parkIndex][i] )

                            DFS (i, subTreeNum++);

         }

}

 

//將原來的子樹架在另一棵樹上

void ChangeTreeTag (int pre, int cur)

{

         int i;

         for (i=0; i<n; i++)

                   if ( treeTag[i] == pre )

                            treeTag[i] = cur;

}

 

//從當前子樹查找與其他子樹相連的最小邊

Edge FindMinEdge (int curTag)

{

         int i;

         Edge e;

         e.len = -1;

         for (i=0; i<edge.size(); i++)

         {

                   if ( ((treeTag[edge[i].a] == curTag && treeTag[edge[i].b] != curTag && edge[i].b != parkIndex)

                            || (treeTag[edge[i].b] == curTag && treeTag[edge[i].a] != curTag && edge[i].a != parkIndex) )

                            && G[edge[i].a][edge[i].b] )

                   {

                            if ( e.len == -1 || edge[i].len < e.len )

                            {

                                     e.a = edge[i].a;

                                     e.b = edge[i].b;

                                     e.len = edge[i].len;

                            }

                   }

         }

         return e;

}

 

 

void DeleteAdd ()

{

         int i, minDif, delTag, newTag;

         minDif = -1;

         Edge addEdge, delEdge, temp;

         for (i=0; i<n; i++)

         {

                   if ( i == parkIndex )

                            continue;

                   temp = FindMinEdge(treeTag[i]);

                   if ( temp.len == -1 )

                            continue;

                   if ( tree[parkIndex][i] && ( minDif == -1 || temp.len - tree[parkIndex][i] < minDif) )

                   {

                            minDif = temp.len - tree[parkIndex][i];

                            addEdge = temp;

                            delEdge.a = parkIndex;

                            delEdge.b = i;

                            delTag = treeTag[i];

                            if ( treeTag[addEdge.a] != delTag )

                                     newTag = treeTag[addEdge.a];

                            else

                                     newTag = treeTag[addEdge.b];

                   }

         }

 

         tree[delEdge.a][delEdge.b] = tree[delEdge.b][delEdge.a] = 0;

         G[delEdge.a][delEdge.b] = G[delEdge.b][delEdge.a] = 0;

         tree[addEdge.a][addEdge.b] = tree[addEdge.b][addEdge.a] = addEdge.len;

        

         minCost += minDif;

 

         ChangeTreeTag(delTag, newTag);

}

 

 

void Solve ()

{

         Kruskal();

         if ( treeDegree[parkIndex] <= k )

         {

                   cout<<"Total miles driven: "<<minCost<<endl;

                   return;

         }

 

         MakeTreeTag ();

 

         int i;

         for (i=0; i<treeDegree[parkIndex]-k; i++)

                   DeleteAdd();

 

         cout<<"Total miles driven: "<<minCost<<endl;

}

 

int main ()

{

         Input ();

         Solve ();

 

         return 0;

}

posted on 2008-07-30 19:10 quxiao 閱讀(980) 評論(1)  編輯 收藏 引用 所屬分類: ACM

評論

# re: PKU 1639 Picnic Planning 2011-03-28 19:28 Chengsir
如果單單從算法來考慮,要求求的是根的出度剛好為 k的最小生成樹,那應該怎么求呀/.  回復  更多評論
  

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲欧洲日本国产| 久久伊人一区二区| 亚洲黄色免费网站| 欧美v国产在线一区二区三区| 国产拍揄自揄精品视频麻豆| 欧美激情亚洲国产| 亚洲精品一品区二品区三品区| 欧美va亚洲va香蕉在线| 久久亚洲综合色一区二区三区| 一区二区三区在线免费播放| 欧美电影打屁股sp| 欧美另类一区二区三区| 亚洲欧美视频| 久久国产福利| 免费观看一级特黄欧美大片| 99国产精品国产精品久久| 日韩午夜在线观看视频| 国产精品天天看| 裸体一区二区三区| 欧美精品三级在线观看| 午夜精品一区二区三区四区| 久久精品国产v日韩v亚洲| 另类天堂视频在线观看| 一区二区三区精品久久久| 亚洲网站视频福利| 狠狠做深爱婷婷久久综合一区| 欧美成人自拍视频| 国产精品久久久久久久久动漫| 久久国产精品久久久久久电车| 男人天堂欧美日韩| 性色av香蕉一区二区| 久久这里只精品最新地址| 欧美日韩第一区| 久久久久久69| 欧美四级伦理在线| 女生裸体视频一区二区三区| 国产精品va在线播放我和闺蜜| 狂野欧美性猛交xxxx巴西| 欧美揉bbbbb揉bbbbb| 免费成人激情视频| 亚洲免费视频一区二区| 亚洲日本乱码在线观看| 午夜精品一区二区三区四区| 日韩视频专区| 久久久久久久波多野高潮日日| 宅男66日本亚洲欧美视频| 久久久97精品| 久久国产精品免费一区| 国产精品v一区二区三区| 欧美激情视频给我| 悠悠资源网久久精品| 亚洲欧美综合| 亚洲欧美日韩精品久久久| 欧美11—12娇小xxxx| 久热综合在线亚洲精品| 国产毛片精品国产一区二区三区| 亚洲精品乱码久久久久| 亚洲大片av| 久久精品午夜| 久久人人超碰| 国产专区精品视频| 性欧美暴力猛交69hd| 亚洲欧美日韩系列| 国产精品毛片一区二区三区| 亚洲青色在线| 亚洲精品永久免费| 欧美高清不卡| 亚洲精品一区二区三区婷婷月| 亚洲国产精品久久精品怡红院| 久久精选视频| 欧美jizz19性欧美| 亚洲国产精品日韩| 欧美成人中文字幕在线| 欧美成人免费网| 亚洲激情偷拍| 欧美日韩第一区| 亚洲视频大全| 久久国产欧美日韩精品| 欧美一区二区三区的| 久久国产乱子精品免费女 | 亚洲图片欧美午夜| 欧美全黄视频| 亚洲一区二区黄| 午夜精品久久久久久久男人的天堂| 国产精品成人观看视频免费 | 在线亚洲一区二区| 欧美性色aⅴ视频一区日韩精品| 亚洲三级影院| 欧美一区亚洲| 在线观看一区| 欧美日本在线看| 亚洲天堂av高清| 久久久精品国产一区二区三区| 狠狠色伊人亚洲综合成人| 久久―日本道色综合久久| 亚洲国产婷婷| 国产精品久久久久久久久久妞妞 | 午夜亚洲福利| 欧美88av| 午夜精品久久| 在线日韩电影| 国产精品国产一区二区| 久久黄色小说| 亚洲免费成人av| 久久久欧美一区二区| 亚洲伦伦在线| 国产一区二区毛片| 欧美激情第三页| 欧美一区二区三区视频| 亚洲黄色三级| 久久综合导航| 午夜免费在线观看精品视频| 亚洲国产日韩欧美在线动漫| 欧美天天在线| 美女视频一区免费观看| 亚洲——在线| 亚洲精品免费一区二区三区| 久久久久国产精品麻豆ai换脸| 99精品欧美一区| 在线观看日韩精品| 国产日韩欧美日韩大片| 欧美日韩免费观看一区| 久久青草福利网站| 亚洲在线观看| 一区二区免费在线播放| 亚洲福利国产精品| 久久综合色播五月| 欧美伊人久久久久久午夜久久久久| 亚洲欧洲精品成人久久奇米网| 国产欧美日韩激情| 欧美视频导航| 欧美日本高清一区| 欧美大香线蕉线伊人久久国产精品| 午夜亚洲精品| 亚洲综合第一| 亚洲视频成人| 一区二区成人精品| 亚洲精品久久久久久久久久久久 | 久久免费视频网站| 久久成人一区| 欧美午夜精品久久久久久久| 欧美国产免费| 免费观看在线综合色| 久久夜色精品国产亚洲aⅴ| 久久国产精品色婷婷| 亚洲在线网站| 亚洲午夜女主播在线直播| 亚洲乱码久久| 一本大道久久a久久精品综合| 亚洲电影专区| 亚洲黄一区二区三区| 在线精品视频一区二区| 亚洲国产精品成人久久综合一区| 精品成人免费| 亚洲国产精品嫩草影院| 亚洲第一黄网| 91久久久亚洲精品| 91久久线看在观草草青青| 亚洲精品日产精品乱码不卡| 亚洲激情电影中文字幕| 99riav久久精品riav| 中日韩在线视频| 亚洲欧美资源在线| 久久精品av麻豆的观看方式| 久久久精品一品道一区| 美女精品视频一区| 亚洲国产天堂久久综合网| 夜夜嗨av一区二区三区| 亚洲男人av电影| 久久久蜜桃一区二区人| 欧美国产乱视频| 国产精品理论片| 精东粉嫩av免费一区二区三区| 亚洲人成7777| 欧美亚洲免费在线| 免费在线看成人av| 亚洲精品社区| 欧美一区二区精美| 欧美成人免费全部| 国产精品一级| 亚洲激情小视频| 亚洲欧美日韩国产一区二区| 久久亚洲欧美| 9l国产精品久久久久麻豆| 午夜天堂精品久久久久 | 午夜日韩视频| 欧美精品免费观看二区| 国产亚洲精品7777| 99国产精品国产精品久久| 久久精品噜噜噜成人av农村| 欧美韩日一区二区| 亚洲午夜激情在线| 蜜臀a∨国产成人精品| 国产精品裸体一区二区三区| 在线日韩av片| 欧美一区二区三区在| 亚洲人成亚洲人成在线观看| 性久久久久久久久久久久| 欧美日韩国产在线一区| 亚洲国产色一区|