• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            QuXiao

            每天進步一點點!

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

            解題報告

             

            題目來源:

            PKU 3513 Let's Go to the Movies

             

            分類:

            樹形DP

             

            原文:

            Let's Go to the Movies

             

            Time Limit: 1000MS


            Memory Limit: 65536K

            Total Submissions: 228


            Accepted: 56

            Description

            http://acm.pku.edu.cn/JudgeOnline/images/3513_1.pngA favorite pastime for big families in Acmestan is going to the movies. It is quite common to see a number of these multi-generation families going together to watch a movie. Movie theaters in Acmestan have two types of tickets: A single ticket is for exactly one person while a family ticket allows a parent and their children to enter the theater. Needless to say, a family ticket is always priced higher than a single ticket, sometimes as high as five times the price of a single ticket.

            It is quite challenging for families to decide which ticket arrangement is most economical to buy. For example, the family depicted in the figure on the right has four ticket arrangements to choose from: Seven single tickets; Two family tickets; One family ticket (for adam, bob, cindy) plus four single tickets for the rest; Or, one family ticket (for bob and his four children) plus single tickets for the remaining two.

            Write a program to determine which ticket arrangement has the least price. If there are more than one such arrangement, print the arrangement that has the least number of tickets.

            Input

            Your program will be tested on one or more test cases. The first line of each test case includes two positive integers (S and F) where S is the price of a single ticket and F is the price of a family ticket. The remaining lines of the test case are either the name of a person going by him/herself, or of the form:

            N1 N2 N3Nk

            where N1 is the name of a parent, with N2Nk being his/her children. Names are all lower-case letters, and no longer than 1000 characters. No parent will be taking more than 1000 of their children to the movies :-). Names are unique, the name of a particular person will appear at most twice: Once as a parent, and once as a child. There will be at least one person and at most 100,000 people in any test case.

            The end of a test case is identified by the beginning of the following test case (a line made of two integers.) The end of the last test case is identified by two zeros.

            Output

            For each test case, write the result using the following format:

            k. NS NF T

            Where k is the test case number (starting at 1), NS is the number of single tickets, NF is the number of family tickets, and T is the total cost of tickets.

            Sample Input

            1 3

            adam bob cindy

            bob dima edie fairuz gary

            1 2

            john

            paul

            george

            ringo

            1 3

            a b c

            0 0

            Sample Output

            1. 2 1 5

            2. 4 0 4

            3. 0 1 3

            Source

            Arab and North Africa 2007

             

             

            中文描述:

            一個大家庭一起去電影院看電影,電影院有兩種票提供:個人票和家庭票。個人票只允許一個人進電影院看電影,而家庭票則可允許一個人帶上他的兒子或女兒一起去看電影。給出整個大家庭的家族樹,讓你算出整個大家庭一起去看電影的總費用以及買個人票和家庭票的數目。當存在有總費用相同的多種方案時,選取總票數最少的那個。

             

            題目分析與算法模型

            很顯然,題目給出的簡化版家譜是一棵樹(每個家庭只有一個父親或母親),每個節點有三種情況:買個人票、買家庭票以及因為父母買了家庭票而不用買票。接著,我們對每一種情況分別討論:

            當某個節點買了個人票時,以這個節點為子樹的最優情況(也就是最少費用)是:他的每個孩子的最優情況加上自己買的個人票。

            當某個節點買了家庭票是,他的孩子可以選擇買票,也可以選擇不買票。對于他的每個孩子,這個節點會選擇這個孩子買票時的最優情況和不買票的最優情況中的那個費用較低的那個(費用一樣,就選總票數最少的那個),最后再加上自己的家庭票。

            當某個節點因為父母買了家庭票而自己不需要買票時,他的最優情況是:他的每個孩子買票時的最優情況的總和。

            無論當前節點選取的是什么情況,也無論這個節點會選取他的孩子的哪種情況,但肯定的是,只要當前節點在某種情況下(個人票、家庭票、不買票)達到最優,他的孩子也必然是某種情況下的最優。也就是,當原問題最優時,子問題也最優,因此問題具有最優子結構,而且在求解過程中,會多次計算某個節點在某種情況下的最優值,因此問題求解過程中具有重疊子問題。所以說,該問題可以用DP來解決。

             

            代碼:

            #include <iostream>

            #include <string>

            #include <map>

            #include <vector>

            using namespace std;

             

            const int MAX = 100005;

             

            int single, family;

            int a, b;               //暫時記錄個人票和家庭票的價格

            map<string, int> dic;   //將名字與一數字進行映射

            map<string, int>::iterator it;          //迭代器

            vector<int> sons[MAX];  //鄰接表,記錄某個節點的孩子

            int people;             //家庭中的人數

            int notRoot[MAX];

            char s[1005];           //暫時存儲輸入的姓名

             

            struct Node

            {                 

               int singleNum, familyNum;

               int minPrice;

            };

            //某個節點買票時的最優情況和不買票時的最優情況

            Node minBuy[MAX], minNotBuy[MAX];

             

            int isNumber (string s)

            {

               int i, ans;

               ans = 0;

               for (i=0; i<s.length(); i++)

               {

                    if ( s[i] >= '0' && s[i] <= '9' )

                          ans = ans*10 + (s[i]-'0');

                    else

                          return -1;

               }

               return ans;

            }

             

            void Initial ()

            {

               memset(notRoot, 0, sizeof(notRoot));

               people = 0;

               memset(minBuy, -1, sizeof(minBuy));

               memset(minNotBuy, -1, sizeof(minNotBuy));

               dic.clear();

            }

             

            bool Input ()

            {

               //如果上個testcase已經將這次輸入的第一個變量讀入到a,就無需再讀入

               if ( a == -1 )

                    scanf("%d", &a);

               scanf("%d", &b);

               single = a;

               family = b;

               a = b = -1;

               if ( single == 0 && family == 0 )

                    return false;

             

               char ch;

               int pIndex, sIndex;

               string parent, son;

              

               Initial ();

             

               while (1)

               {

                    //先將名字讀入字符串數組,在將其置于string 這樣做是為了節省時間

                    scanf("%s", &s);          

                    parent = "";

                    parent.append(s);

                    a = isNumber(parent);

                    if ( a != -1 )       //讀入了下個testcase的數據

                          break;

             

                    it = dic.find(parent);     //查找有無對應映射

                    if ( it ==  dic.end() )

                    {

                          dic[parent] = people;

                          sons[people].clear();

                          people++;

                    }

             

                    pIndex = dic[parent];

             

                    //讀取當前節點的孩子

                    ch = getchar();

                    while ( ch != '\n' )

                    {

                          scanf("%s", &s);

                          son = "";

                          son.append(s);       //把字符數組的內容傳給string

                          it = dic.find(son);

                          if ( it == dic.end() )

                          {

                               dic[son] = people;

                               sons[people].clear();

                               people++;

                          }

                          sIndex = dic[son];

                          sons[pIndex].push_back(sIndex);

                          notRoot[sIndex] = 1;

             

                          ch = getchar();

                    }

               }

             

               return true;

            }

             

            int getMinBuy (int);          //計算買票時的最少費用

            int getMinNotBuy (int);       //計算不買票時的最少費用

             

            int getMinBuy (int index)

            {

               if ( minBuy[index].minPrice != -1 )

                    return minBuy[index].minPrice;

             

               int i;

               //當前節點買家庭票

               int singleNum1, familyNum1, price1;

               singleNum1 = 0;

               familyNum1 = 1;

               price1 = family;

               for (i=0; i<sons[index].size(); i++)

               {

                    //買票時的費用比不買票時的費用低,或者費用相同時,買票時所買的總票數少

                    if ( getMinBuy(sons[index][i]) < getMinNotBuy(sons[index][i])

                    || ( getMinBuy(sons[index][i])==getMinNotBuy(sons[index][i])

            && minBuy[sons[index][i]].singleNum+

               minBuy[sons[index][i]].familyNum

               <=

               minNotBuy[sons[index][i]].singleNum +     

               minNotBuy[sons[index][i]].familyNum ) )

                    {

                          price1 += minBuy[sons[index][i]].minPrice;

                          singleNum1 += minBuy[sons[index][i]].singleNum;

                          familyNum1 += minBuy[sons[index][i]].familyNum;

                    }

                    else

                    {

                          price1 += minNotBuy[sons[index][i]].minPrice;

                          singleNum1 += minNotBuy[sons[index][i]].singleNum;

                          familyNum1 += minNotBuy[sons[index][i]].familyNum;

                    }

               }

             

               //當前節點買個人票

               int singleNum2, familyNum2, price2;

               singleNum2 = 1;

               familyNum2 = 0;

               price2 = single;

               for (i=0; i<sons[index].size(); i++)

               {

                    price2 += getMinBuy(sons[index][i]);

                    singleNum2 += minBuy[sons[index][i]].singleNum;

                    familyNum2 += minBuy[sons[index][i]].familyNum;

               }

               //決定當前節點買票時,是買個人票還是買家庭票

               if ( price1 < price2 || ( price1 == price2 && singleNum1 +

                    familyNum1 <= singleNum2 + familyNum2 ) )

               {

                    minBuy[index].minPrice = price1;

                    minBuy[index].singleNum = singleNum1;

                    minBuy[index].familyNum = familyNum1;

               }

               else

               {

                    minBuy[index].minPrice = price2;

                    minBuy[index].singleNum = singleNum2;

                    minBuy[index].familyNum = familyNum2;

               }

             

               return minBuy[index].minPrice;

            }

             

            int getMinNotBuy (int index)

            {

               if ( minNotBuy[index].minPrice != -1 )

                    return minNotBuy[index].minPrice;

             

               int i, singleNum, familyNum, price;

               singleNum = familyNum = 0;

               price = 0;

               //取每個孩子買票的最優情況

               for (i=0; i<sons[index].size(); i++)

               {

                    price += getMinBuy(sons[index][i]);

                    singleNum += minBuy[sons[index][i]].singleNum;

                    familyNum += minBuy[sons[index][i]].familyNum;

               }

             

               minNotBuy[index].minPrice = price;

               minNotBuy[index].singleNum = singleNum;

               minNotBuy[index].familyNum = familyNum;

               return minNotBuy[index].minPrice;

            }

             

            void Solve ()

            {

             

               int i, price, singleNum, familyNum;

               price = singleNum = familyNum = 0;

             

               for (i=0; i<people; i++)

               {

                    if ( ! notRoot[i] )

                    {

                          price += getMinBuy(i);

                          singleNum += minBuy[i].singleNum;

                          familyNum += minBuy[i].familyNum;

                    }

               }

             

               printf("%d %d %d\n", singleNum, familyNum, price);

            }

             

            int main ()

            {

               int i = 0;

               a = b = -1;

               while ( Input() )

               {

                    printf("%d. ", ++i);

                    Solve ();

               }

               return 0;

            }

             

            心得:

            本題有兩個考察的地方,一是是否能對簡單的樹形DP模型進行構建,二是是否有比較強的實際編程能力。第一點我不想再重復,前面講的也比較詳細。做了這題,感覺收獲最大的就是學了不少的編程的小技巧。比如處理輸入輸出(本題的輸入讓人有些頭疼)、利用STL中的map把字符串和整數映射起來(這個很有用)、利用vector建樹、為了節省時間先把字符串讀入到字符數組,再把內容傳給string等等。雖然這些小技巧看起來有些“微不足道”,但在平時做題或者比賽時,如果不熟練掌握這些小技巧,往往會在關鍵時刻阻礙你解題的步伐。算法的理論知識是可以從書本上學到的,但那些編程的技巧卻只能從平時做題的積累中才能慢慢掌握的。其中,我感覺,使用STL可以大大減少編程的復雜程度。雖然對于那些剛接觸算法的同學來說,我并不推薦使用STL,因為這樣會屏蔽掉許多底層的原理。但在比賽時,使用STL還是可以節約不少時間與精力的。STL中,比較常用的有stringvectormappriority_queue等等,已經有一些做題經驗的同學可以在平時順帶的看一下有關STL的內容(推薦一個網站:http://www.cplusplus.com/,里面幾乎包含所有關于C++函數以及STL的參考資料,大部分函數都帶有簡明的代碼樣例)。

            posted on 2008-03-25 23:16 quxiao 閱讀(565) 評論(0)  編輯 收藏 引用 所屬分類: ACM
            亚洲中文字幕久久精品无码APP | 中文成人无码精品久久久不卡| 51久久夜色精品国产| 久久国产乱子伦精品免费强| 99久久精品国产一区二区三区| 亚洲国产天堂久久久久久| 无码任你躁久久久久久久| 亚洲精品美女久久久久99| 久久精品女人天堂AV麻| 人妻精品久久无码区| 久久成人18免费网站| 无码人妻少妇久久中文字幕蜜桃| 午夜不卡888久久| 久久无码人妻一区二区三区| 国产免费福利体检区久久| 久久久av波多野一区二区| 久久99热这里只有精品国产| 精品久久久久久中文字幕大豆网 | 欧美大香线蕉线伊人久久| 色综合久久88色综合天天| 亚洲精品高清国产一线久久| 91久久福利国产成人精品| 一本色道久久99一综合| 亚洲国产日韩综合久久精品| 成人精品一区二区久久| 国内精品久久久久伊人av| 国产偷久久久精品专区 | 亚洲国产小视频精品久久久三级 | 亚洲国产成人精品91久久久 | 欧美黑人激情性久久| 久久久噜噜噜久久| 亚洲欧洲精品成人久久曰影片 | 国产成人综合久久精品红 | 欧美日韩成人精品久久久免费看| 精品多毛少妇人妻AV免费久久| 久久99精品久久久久久秒播 | 无码国内精品久久人妻麻豆按摩 | 久久亚洲电影| 久久久久亚洲爆乳少妇无| 精品久久久久久久久久久久久久久| 久久久精品午夜免费不卡|