• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            QuXiao

            每天進步一點點!

              C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
              50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

            PKU 1639 Picnic Planning解題報告

             

            分類:

            圖論、最小度限制生成樹

             

            原題:

            Picnic Planning

            Time Limit: 5000MS

            Memory Limit: 10000K

            Description

            The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

            Input

            Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

            Output

            Output should consist of one line of the form
            Total miles driven: xxx
            where xxx is the total number of miles driven by all the brothers' cars.

            Sample Input

            10

            Alphonzo Bernardo 32

            Alphonzo Park 57

            Alphonzo Eduardo 43

            Bernardo Park 19

            Bernardo Clemenzi 82

            Clemenzi Park 65

            Clemenzi Herb 90

            Clemenzi Eduardo 109

            Park Herb 24

            Herb Eduardo 79

            3

            Sample Output

            Total miles driven: 183

             

             

            題目大意:

            一些人想從各自的家中開車到一個地方野餐,每個人的家中都可以容納無限多的車子,每個人的車子可以容納無限多的人。每個人可以先開車到另一人家中,將車停在那人家中,兩人(或多人)再開同一輛車開往目的地。但野餐的地方只有有限個停車位k,告訴你一些路程的長度,問你將所有人都聚集再野餐地點,所使用的最短路程是多少。

             

            思路:

            因為題目中說到,一個人可以先開車到其他人家中,然后他們再一起開車前往目的地,所以將問題抽象出來,將各人的家和目的地看作點,將各個路程看作邊,若沒有目的地停車位(點的度)的限制,問題就可以轉化為求最小生成樹的問題。但加上了對某一點度的限制,問題就變得復雜了。

            假設,若我們將度限制條件放在一邊,直接求最小生成樹。如果在最小生成樹中,目的地所在點的度數(shù)已經滿足degree <= k,那么度限制生成樹就已經得到了。因為不可能有比它權值和更小的生成樹了,并且點的度數(shù)滿足條件。

            還有一種情況,那就是先按最小生成樹算法得到的生成樹中,目的地所在點的度數(shù)degree > k,那么很自然的,我們就要想到刪去degree-k條樹中與規(guī)定點相連的邊,使得它滿足度限制要求。每刪去邊之后,都要再加上一條邊,否則圖就會不連通,但是,又應該怎樣刪邊呢?假設,規(guī)定點的度數(shù)為t,那么就有t根與規(guī)定點相連的子樹T1T2、……、Tt,若刪去Ti與規(guī)定點相連的那條邊,Ti這棵子樹就“懸空”了,必須將Ti這棵樹“架”到其他子樹上才可以。經過這樣一次的“刪添”操作之后,修改之后的圖仍然是棵樹,但規(guī)定點的度數(shù)減少了1,只要這樣進行t-k次,就可以得到滿足條件的度限制生成樹了。但怎樣保證最小呢?只要在每次的“刪添”操作時,保證“添”的邊的權值減去“刪”的邊的權值的差值(必大于等于0)最小就可以了。

            除了這種方法,lrj的書上還介紹了另一種方法。其大致思想是:現(xiàn)將規(guī)定點以及與它相連的邊都去掉,再在剩下的圖中求出每個連通分量的最小生成樹,在進行“差額最小添刪操作”,求出滿足度限制的情況下的可能的權值,在其中不斷更新樹的權值和。具體算法將黑書P300~P303

             

             

            代碼:

             

            #include <iostream>

            #include <map>

            #include <string>

            #include <vector>

            #include <algorithm>

            using namespace std;

             

            const int MAX = 50;

             

            struct Edge

            {

                     int a, b;

                     int len;

            };

             

            vector<Edge> edge;

            map<string, int> nameIndex;

            int G[MAX][MAX];

            int tree[MAX][MAX];

            int n, m, k;

            int parkIndex;

            int degree[MAX];

            int treeDegree[MAX];

            int p[MAX];

            int inTree[MAX];

            int rank[MAX];

            int minCost;

            int treeTag[MAX];             //對子樹進行標記

            int visited[MAX];

            int subTreeNum;

             

            bool operator< (Edge e1, Edge e2)

            {

                     return ( e1.len < e2.len );

            }

             

             

            void Input ()

            {

                     string a, b;

                     int index1, index2;

                     int len;

                     Edge e;

                     n = 0;

                     cin>>m;

                     for (int i=0; i<m; i++)

                     {

                               cin>>a>>b>>len;

                               if ( nameIndex.find(a) == nameIndex.end() )

                               {

                                        nameIndex[a] = n;

                                        index1 = n;

                                        n ++;

                               }

                               else

                               {

                                        index1 = nameIndex[a];

                               }

             

                               if ( nameIndex.find(b) == nameIndex.end() )

                               {

                                        nameIndex[b] = n;

                                        index2 = n;

                                        n ++;

                               }

                               else

                               {

                                        index2 = nameIndex[b];

                               }

             

                               if ( a == "Park" )

                                        parkIndex = index1;

                               if ( b == "Park" )

                                        parkIndex = index2;

                               G[index1][index2] = G[index2][index1] = len;

                               e.a = index1;

                               e.b = index2;

                               e.len = len;

                               edge.push_back(e);

                               degree[index1] ++;

                               degree[index2] ++;

                     }

             

                     cin>>k;

            }

             

            int Find (int x)

            {

                int t, root, w;

                t = x;

                while ( p[t] != -1 )

                               t = p[t];

                root = t;

                t = x;

                while ( p[t] != -1 )

                {

                               w = p[t];

                               p[t] = root;

                               t = w;

                }

                    

                return root;

            }

             

            void Union (int x, int y)

            {

                     int r1, r2;

                     r1 = Find(x);

                     r2 = Find(y);

                    

                     if ( rank[r1] >= rank[r2] )

                     {

                               p[r2] = r1;

                               if ( rank[r1] == rank[r2] )

                                        rank[r1]++;

                     }

                     else

                               p[r1] = r2;

            }

             

             

            bool Kruskal ()

            {

                     int i, r1, r2, k, total, Max;

                     memset(p, -1, sizeof(p));

                     memset(inTree, 0, sizeof(inTree));

                     memset(rank, 1, sizeof(rank));

                     //qsort(edge, edgeNum, sizeof(edge[0]), cmp);

                     sort(edge.begin(), edge.end());

             

                Max = -1;

                     k = 0;

                     minCost = 0;

                     for (i=0; i<edge.size() && k<n-1; i++)

                     {

             

                               r1 = Find(edge[i].a);

                               r2 = Find(edge[i].b);

                               if ( r1 != r2 )

                               {

                                        tree[edge[i].a][edge[i].b] = tree[edge[i].b][edge[i].a] = edge[i].len;

                                        //cout<<edge[i].a<<' '<<edge[i].b<<endl;

                                        Union(r1, r2);

                                        inTree[i] = 1;

                                        treeDegree[edge[i].a] ++;

                                        treeDegree[edge[i].b] ++;

                                        k++;

                                        minCost += edge[i].len;

                               }

                     }

             

             

                     if ( k == n - 1 )

                    return true;

                     else

                               return false;

            }

             

             

            void DFS (int cur, int index)

            {

                     visited[cur] = 1;

                     treeTag[cur] = index;

                     int i;

                     for (i=0; i<n; i++)

                     {

                               if ( tree[cur][i] && !visited[i] )

                               {

                                        DFS (i, index);

                               }

                     }

            }

             

            void MakeTreeTag ()

            {

                     int i;

                     subTreeNum = 0;

                     memset(visited, 0, sizeof(visited));

                     visited[parkIndex] = 1;

                     memset(treeTag, -1, sizeof(treeTag));

                     for (i=0; i<n; i++)

                     {

                               if ( tree[parkIndex][i] )

                                        DFS (i, subTreeNum++);

                     }

            }

             

            //將原來的子樹架在另一棵樹上

            void ChangeTreeTag (int pre, int cur)

            {

                     int i;

                     for (i=0; i<n; i++)

                               if ( treeTag[i] == pre )

                                        treeTag[i] = cur;

            }

             

            //從當前子樹查找與其他子樹相連的最小邊

            Edge FindMinEdge (int curTag)

            {

                     int i;

                     Edge e;

                     e.len = -1;

                     for (i=0; i<edge.size(); i++)

                     {

                               if ( ((treeTag[edge[i].a] == curTag && treeTag[edge[i].b] != curTag && edge[i].b != parkIndex)

                                        || (treeTag[edge[i].b] == curTag && treeTag[edge[i].a] != curTag && edge[i].a != parkIndex) )

                                        && G[edge[i].a][edge[i].b] )

                               {

                                        if ( e.len == -1 || edge[i].len < e.len )

                                        {

                                                 e.a = edge[i].a;

                                                 e.b = edge[i].b;

                                                 e.len = edge[i].len;

                                        }

                               }

                     }

                     return e;

            }

             

             

            void DeleteAdd ()

            {

                     int i, minDif, delTag, newTag;

                     minDif = -1;

                     Edge addEdge, delEdge, temp;

                     for (i=0; i<n; i++)

                     {

                               if ( i == parkIndex )

                                        continue;

                               temp = FindMinEdge(treeTag[i]);

                               if ( temp.len == -1 )

                                        continue;

                               if ( tree[parkIndex][i] && ( minDif == -1 || temp.len - tree[parkIndex][i] < minDif) )

                               {

                                        minDif = temp.len - tree[parkIndex][i];

                                        addEdge = temp;

                                        delEdge.a = parkIndex;

                                        delEdge.b = i;

                                        delTag = treeTag[i];

                                        if ( treeTag[addEdge.a] != delTag )

                                                 newTag = treeTag[addEdge.a];

                                        else

                                                 newTag = treeTag[addEdge.b];

                               }

                     }

             

                     tree[delEdge.a][delEdge.b] = tree[delEdge.b][delEdge.a] = 0;

                     G[delEdge.a][delEdge.b] = G[delEdge.b][delEdge.a] = 0;

                     tree[addEdge.a][addEdge.b] = tree[addEdge.b][addEdge.a] = addEdge.len;

                    

                     minCost += minDif;

             

                     ChangeTreeTag(delTag, newTag);

            }

             

             

            void Solve ()

            {

                     Kruskal();

                     if ( treeDegree[parkIndex] <= k )

                     {

                               cout<<"Total miles driven: "<<minCost<<endl;

                               return;

                     }

             

                     MakeTreeTag ();

             

                     int i;

                     for (i=0; i<treeDegree[parkIndex]-k; i++)

                               DeleteAdd();

             

                     cout<<"Total miles driven: "<<minCost<<endl;

            }

             

            int main ()

            {

                     Input ();

                     Solve ();

             

                     return 0;

            }

            posted on 2008-07-30 19:10 quxiao 閱讀(948) 評論(1)  編輯 收藏 引用 所屬分類: ACM

            評論

            # re: PKU 1639 Picnic Planning 2011-03-28 19:28 Chengsir
            如果單單從算法來考慮,要求求的是根的出度剛好為 k的最小生成樹,那應該怎么求呀/.  回復  更多評論
              

            久久久亚洲欧洲日产国码二区 | 国产精品毛片久久久久久久| 久久青青色综合| 亚洲中文久久精品无码| 久久精品夜夜夜夜夜久久| 国产精品久久一区二区三区| 免费一级做a爰片久久毛片潮| 一本久久a久久精品亚洲| 日本福利片国产午夜久久| 亚洲精品高清一二区久久| 久久91精品国产91久久麻豆 | 久久综合88熟人妻| 久久久久国产精品嫩草影院| 久久人人爽人人爽人人av东京热| 国产一区二区三区久久精品| 亚洲国产成人久久笫一页| 久久青青草原国产精品免费| 久久强奷乱码老熟女网站| 99久久亚洲综合精品成人| 无码超乳爆乳中文字幕久久 | 久久久久亚洲AV综合波多野结衣| 久久久久人妻一区精品性色av| 日韩亚洲国产综合久久久| 99久久亚洲综合精品网站| 久久99国产精品久久久| 无码人妻精品一区二区三区久久久 | 久久久久亚洲AV无码观看 | 7777精品久久久大香线蕉| 久久久久久久亚洲精品| 色综合久久综合网观看| 97久久超碰国产精品2021| 日本强好片久久久久久AAA| 亚洲国产精品无码久久久不卡 | 亚洲精品午夜国产va久久| 久久99精品久久久久久9蜜桃| 久久精品视频免费| 国产精品热久久无码av| 久久精品夜色噜噜亚洲A∨| 99热热久久这里只有精品68| 精品国产乱码久久久久久浪潮| 国产亚洲精久久久久久无码AV|