青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

QuXiao

每天進(jìn)步一點(diǎn)點(diǎn)!

  C++博客 :: 首頁(yè) :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
  50 隨筆 :: 0 文章 :: 27 評(píng)論 :: 0 Trackbacks

PKU 1639 Picnic Planning解題報(bào)告

 

分類:

圖論、最小度限制生成樹

 

原題:

Picnic Planning

Time Limit: 5000MS

Memory Limit: 10000K

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form
Total miles driven: xxx
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10

Alphonzo Bernardo 32

Alphonzo Park 57

Alphonzo Eduardo 43

Bernardo Park 19

Bernardo Clemenzi 82

Clemenzi Park 65

Clemenzi Herb 90

Clemenzi Eduardo 109

Park Herb 24

Herb Eduardo 79

3

Sample Output

Total miles driven: 183

 

 

題目大意:

一些人想從各自的家中開車到一個(gè)地方野餐,每個(gè)人的家中都可以容納無(wú)限多的車子,每個(gè)人的車子可以容納無(wú)限多的人。每個(gè)人可以先開車到另一人家中,將車停在那人家中,兩人(或多人)再開同一輛車開往目的地。但野餐的地方只有有限個(gè)停車位k,告訴你一些路程的長(zhǎng)度,問(wèn)你將所有人都聚集再野餐地點(diǎn),所使用的最短路程是多少。

 

思路:

因?yàn)轭}目中說(shuō)到,一個(gè)人可以先開車到其他人家中,然后他們?cè)僖黄痖_車前往目的地,所以將問(wèn)題抽象出來(lái),將各人的家和目的地看作點(diǎn),將各個(gè)路程看作邊,若沒有目的地停車位(點(diǎn)的度)的限制,問(wèn)題就可以轉(zhuǎn)化為求最小生成樹的問(wèn)題。但加上了對(duì)某一點(diǎn)度的限制,問(wèn)題就變得復(fù)雜了。

假設(shè),若我們將度限制條件放在一邊,直接求最小生成樹。如果在最小生成樹中,目的地所在點(diǎn)的度數(shù)已經(jīng)滿足degree <= k,那么度限制生成樹就已經(jīng)得到了。因?yàn)椴豢赡苡斜人鼨?quán)值和更小的生成樹了,并且點(diǎn)的度數(shù)滿足條件。

還有一種情況,那就是先按最小生成樹算法得到的生成樹中,目的地所在點(diǎn)的度數(shù)degree > k,那么很自然的,我們就要想到刪去degree-k條樹中與規(guī)定點(diǎn)相連的邊,使得它滿足度限制要求。每刪去邊之后,都要再加上一條邊,否則圖就會(huì)不連通,但是,又應(yīng)該怎樣刪邊呢?假設(shè),規(guī)定點(diǎn)的度數(shù)為t,那么就有t根與規(guī)定點(diǎn)相連的子樹T1T2、……、Tt,若刪去Ti與規(guī)定點(diǎn)相連的那條邊,Ti這棵子樹就“懸空”了,必須將Ti這棵樹“架”到其他子樹上才可以。經(jīng)過(guò)這樣一次的“刪添”操作之后,修改之后的圖仍然是棵樹,但規(guī)定點(diǎn)的度數(shù)減少了1,只要這樣進(jìn)行t-k次,就可以得到滿足條件的度限制生成樹了。但怎樣保證最小呢?只要在每次的“刪添”操作時(shí),保證“添”的邊的權(quán)值減去“刪”的邊的權(quán)值的差值(必大于等于0)最小就可以了。

除了這種方法,lrj的書上還介紹了另一種方法。其大致思想是:現(xiàn)將規(guī)定點(diǎn)以及與它相連的邊都去掉,再在剩下的圖中求出每個(gè)連通分量的最小生成樹,在進(jìn)行“差額最小添刪操作”,求出滿足度限制的情況下的可能的權(quán)值,在其中不斷更新樹的權(quán)值和。具體算法將黑書P300~P303

 

 

代碼:

 

#include <iostream>

#include <map>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

 

const int MAX = 50;

 

struct Edge

{

         int a, b;

         int len;

};

 

vector<Edge> edge;

map<string, int> nameIndex;

int G[MAX][MAX];

int tree[MAX][MAX];

int n, m, k;

int parkIndex;

int degree[MAX];

int treeDegree[MAX];

int p[MAX];

int inTree[MAX];

int rank[MAX];

int minCost;

int treeTag[MAX];             //對(duì)子樹進(jìn)行標(biāo)記

int visited[MAX];

int subTreeNum;

 

bool operator< (Edge e1, Edge e2)

{

         return ( e1.len < e2.len );

}

 

 

void Input ()

{

         string a, b;

         int index1, index2;

         int len;

         Edge e;

         n = 0;

         cin>>m;

         for (int i=0; i<m; i++)

         {

                   cin>>a>>b>>len;

                   if ( nameIndex.find(a) == nameIndex.end() )

                   {

                            nameIndex[a] = n;

                            index1 = n;

                            n ++;

                   }

                   else

                   {

                            index1 = nameIndex[a];

                   }

 

                   if ( nameIndex.find(b) == nameIndex.end() )

                   {

                            nameIndex[b] = n;

                            index2 = n;

                            n ++;

                   }

                   else

                   {

                            index2 = nameIndex[b];

                   }

 

                   if ( a == "Park" )

                            parkIndex = index1;

                   if ( b == "Park" )

                            parkIndex = index2;

                   G[index1][index2] = G[index2][index1] = len;

                   e.a = index1;

                   e.b = index2;

                   e.len = len;

                   edge.push_back(e);

                   degree[index1] ++;

                   degree[index2] ++;

         }

 

         cin>>k;

}

 

int Find (int x)

{

    int t, root, w;

    t = x;

    while ( p[t] != -1 )

                   t = p[t];

    root = t;

    t = x;

    while ( p[t] != -1 )

    {

                   w = p[t];

                   p[t] = root;

                   t = w;

    }

        

    return root;

}

 

void Union (int x, int y)

{

         int r1, r2;

         r1 = Find(x);

         r2 = Find(y);

        

         if ( rank[r1] >= rank[r2] )

         {

                   p[r2] = r1;

                   if ( rank[r1] == rank[r2] )

                            rank[r1]++;

         }

         else

                   p[r1] = r2;

}

 

 

bool Kruskal ()

{

         int i, r1, r2, k, total, Max;

         memset(p, -1, sizeof(p));

         memset(inTree, 0, sizeof(inTree));

         memset(rank, 1, sizeof(rank));

         //qsort(edge, edgeNum, sizeof(edge[0]), cmp);

         sort(edge.begin(), edge.end());

 

    Max = -1;

         k = 0;

         minCost = 0;

         for (i=0; i<edge.size() && k<n-1; i++)

         {

 

                   r1 = Find(edge[i].a);

                   r2 = Find(edge[i].b);

                   if ( r1 != r2 )

                   {

                            tree[edge[i].a][edge[i].b] = tree[edge[i].b][edge[i].a] = edge[i].len;

                            //cout<<edge[i].a<<' '<<edge[i].b<<endl;

                            Union(r1, r2);

                            inTree[i] = 1;

                            treeDegree[edge[i].a] ++;

                            treeDegree[edge[i].b] ++;

                            k++;

                            minCost += edge[i].len;

                   }

         }

 

 

         if ( k == n - 1 )

        return true;

         else

                   return false;

}

 

 

void DFS (int cur, int index)

{

         visited[cur] = 1;

         treeTag[cur] = index;

         int i;

         for (i=0; i<n; i++)

         {

                   if ( tree[cur][i] && !visited[i] )

                   {

                            DFS (i, index);

                   }

         }

}

 

void MakeTreeTag ()

{

         int i;

         subTreeNum = 0;

         memset(visited, 0, sizeof(visited));

         visited[parkIndex] = 1;

         memset(treeTag, -1, sizeof(treeTag));

         for (i=0; i<n; i++)

         {

                   if ( tree[parkIndex][i] )

                            DFS (i, subTreeNum++);

         }

}

 

//將原來(lái)的子樹架在另一棵樹上

void ChangeTreeTag (int pre, int cur)

{

         int i;

         for (i=0; i<n; i++)

                   if ( treeTag[i] == pre )

                            treeTag[i] = cur;

}

 

//從當(dāng)前子樹查找與其他子樹相連的最小邊

Edge FindMinEdge (int curTag)

{

         int i;

         Edge e;

         e.len = -1;

         for (i=0; i<edge.size(); i++)

         {

                   if ( ((treeTag[edge[i].a] == curTag && treeTag[edge[i].b] != curTag && edge[i].b != parkIndex)

                            || (treeTag[edge[i].b] == curTag && treeTag[edge[i].a] != curTag && edge[i].a != parkIndex) )

                            && G[edge[i].a][edge[i].b] )

                   {

                            if ( e.len == -1 || edge[i].len < e.len )

                            {

                                     e.a = edge[i].a;

                                     e.b = edge[i].b;

                                     e.len = edge[i].len;

                            }

                   }

         }

         return e;

}

 

 

void DeleteAdd ()

{

         int i, minDif, delTag, newTag;

         minDif = -1;

         Edge addEdge, delEdge, temp;

         for (i=0; i<n; i++)

         {

                   if ( i == parkIndex )

                            continue;

                   temp = FindMinEdge(treeTag[i]);

                   if ( temp.len == -1 )

                            continue;

                   if ( tree[parkIndex][i] && ( minDif == -1 || temp.len - tree[parkIndex][i] < minDif) )

                   {

                            minDif = temp.len - tree[parkIndex][i];

                            addEdge = temp;

                            delEdge.a = parkIndex;

                            delEdge.b = i;

                            delTag = treeTag[i];

                            if ( treeTag[addEdge.a] != delTag )

                                     newTag = treeTag[addEdge.a];

                            else

                                     newTag = treeTag[addEdge.b];

                   }

         }

 

         tree[delEdge.a][delEdge.b] = tree[delEdge.b][delEdge.a] = 0;

         G[delEdge.a][delEdge.b] = G[delEdge.b][delEdge.a] = 0;

         tree[addEdge.a][addEdge.b] = tree[addEdge.b][addEdge.a] = addEdge.len;

        

         minCost += minDif;

 

         ChangeTreeTag(delTag, newTag);

}

 

 

void Solve ()

{

         Kruskal();

         if ( treeDegree[parkIndex] <= k )

         {

                   cout<<"Total miles driven: "<<minCost<<endl;

                   return;

         }

 

         MakeTreeTag ();

 

         int i;

         for (i=0; i<treeDegree[parkIndex]-k; i++)

                   DeleteAdd();

 

         cout<<"Total miles driven: "<<minCost<<endl;

}

 

int main ()

{

         Input ();

         Solve ();

 

         return 0;

}

posted on 2008-07-30 19:10 quxiao 閱讀(970) 評(píng)論(1)  編輯 收藏 引用 所屬分類: ACM

評(píng)論

# re: PKU 1639 Picnic Planning 2011-03-28 19:28 Chengsir
如果單單從算法來(lái)考慮,要求求的是根的出度剛好為 k的最小生成樹,那應(yīng)該怎么求呀/.  回復(fù)  更多評(píng)論
  

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲国产精品一区在线观看不卡| 欧美v国产在线一区二区三区| 一本一本久久| 欧美电影在线播放| 男女精品网站| 亚洲美女av在线播放| 亚洲最新在线| 国产一区二区三区久久| 米奇777在线欧美播放| 欧美激情久久久久| 欧美在线|欧美| 亚洲欧美日韩综合| 亚洲免费在线看| 在线观看成人av| 在线综合欧美| 亚洲国产小视频在线观看| 一区二区三区色| 亚洲国产一区二区三区在线播| 91久久午夜| 国产午夜精品视频| 亚洲视频在线一区观看| 亚洲国产精品一区| 99国产一区二区三精品乱码| 亚洲欧美亚洲| 午夜精品国产| 国产精品成人观看视频免费| 欧美成人中文| 亚洲国产精品va在看黑人| 欧美一站二站| 麻豆精品网站| 国产日韩欧美高清| 亚洲一区二区少妇| 亚洲一区999| 国产精品久久久久影院亚瑟| 99热这里只有成人精品国产| 亚洲福利视频二区| 亚洲夜间福利| 亚洲男人的天堂在线| 亚洲电影中文字幕| 亚洲盗摄视频| 亚洲欧美日韩另类精品一区二区三区| 日韩视频一区二区在线观看| 久久婷婷av| 久久久水蜜桃| 亚洲高清视频一区二区| 老牛影视一区二区三区| 亚洲国产欧美日韩另类综合| 国产主播精品| 欧美黄色网络| 中文在线一区| 欧美99在线视频观看| 亚洲视频一区二区免费在线观看| 国产精品乱码一区二三区小蝌蚪| 亚洲免费在线观看| 亚洲高清资源| 久久精品综合一区| 日韩亚洲精品视频| 国精品一区二区三区| 国产网站欧美日韩免费精品在线观看 | 亚洲一区二区三区四区五区午夜| 性欧美大战久久久久久久久| 亚洲高清激情| 国产中文一区二区| 韩国av一区二区| 国产精品区免费视频| 欧美日韩国产在线播放网站| 久久国产福利| 久久久久88色偷偷免费| 亚洲欧美日本另类| 亚洲高清成人| 欧美xx69| 男人天堂欧美日韩| 久热精品在线视频| 久久色在线播放| 久久精品成人一区二区三区蜜臀 | 欧美精品97| 久久尤物视频| 免费观看一区| 欧美日韩国产小视频| 欧美日韩一区二区三区视频| 欧美午夜激情小视频| 国产精品日韩在线观看| 国产乱人伦精品一区二区| 黑人巨大精品欧美黑白配亚洲| 欧美日韩国产在线一区| 国产精品九九| 亚洲第一中文字幕在线观看| 最新中文字幕亚洲| 亚洲一区二区三区四区中文 | 亚洲视屏在线播放| 午夜视频久久久久久| 久久久久一区二区三区四区| 国产精品捆绑调教| 激情国产一区| 亚洲免费在线看| 久久三级福利| 一区二区三区**美女毛片| 久久成人羞羞网站| 欧美亚洲成人精品| 亚洲电影专区| 久久在线免费| 日韩亚洲欧美一区| 欧美一区二区三区四区夜夜大片| 欧美岛国在线观看| 黄色一区二区三区四区| 亚洲欧美日韩人成在线播放| 亚洲国内精品| 每日更新成人在线视频| 韩国女主播一区二区三区| 日韩午夜在线| 亚洲激情女人| 欧美韩日精品| 99国产精品久久久久久久| 鲁大师影院一区二区三区| 欧美在线观看视频一区二区| 国产精品高潮视频| 亚洲欧美在线一区二区| 亚洲在线免费视频| 国产欧美日韩综合| 久久精品国产一区二区电影 | 亚洲午夜电影| 国产精品一区二区黑丝| 亚洲欧美日韩视频一区| 亚洲一区日本| 国内精品久久久久久久果冻传媒 | 久久精品91| 国产午夜精品美女毛片视频| 久久不射2019中文字幕| 久久久久国色av免费观看性色| 尤物yw午夜国产精品视频明星| 美女亚洲精品| 在线成人激情视频| 在线国产精品播放| 亚洲精品免费在线观看| 国产精品大片wwwwww| 久久久久欧美精品| 欧美日韩成人精品| 久久国产精品第一页| 你懂的亚洲视频| 亚洲欧美亚洲| 欧美精品尤物在线| 久久精品国产亚洲5555| 国产精品a久久久久| 欧美国产日韩二区| 女主播福利一区| 国产精品卡一卡二卡三| 亚洲高清视频在线观看| 国语自产精品视频在线看抢先版结局| 亚洲国产人成综合网站| 国外成人在线视频网站| 亚洲伊人网站| 亚洲欧美日韩在线高清直播| 欧美xxx成人| 欧美电影资源| 国产一区二区剧情av在线| 亚洲午夜激情网页| 9久re热视频在线精品| 欧美成人高清视频| 免费亚洲婷婷| 精久久久久久| 麻豆久久久9性大片| 欧美电影电视剧在线观看| 海角社区69精品视频| 久久激情久久| 亚洲国产美女精品久久久久∴| 亚洲清纯自拍| 国产精品一区二区在线观看网站| 在线亚洲欧美专区二区| 久久av二区| 在线播放中文字幕一区| 欧美激情1区2区3区| 一区二区不卡在线视频 午夜欧美不卡' | 欧美日韩精品一区二区三区| 一区二区三区精品久久久| 欧美一区在线视频| 国产一本一道久久香蕉| 老司机免费视频久久| 亚洲免费观看在线观看| 国产毛片精品国产一区二区三区| 欧美在线看片| 亚洲精品日韩精品| 另类av导航| 欧美在线中文字幕| 亚洲精品一二| 久久精品视频在线| 亚洲欧美国产精品va在线观看| 18成人免费观看视频| 国产精品jizz在线观看美国| 老司机精品视频一区二区三区| 亚洲色图自拍| 一区二区三区欧美在线| 亚洲国产精品久久精品怡红院| 久久精品国产亚洲精品| 亚洲欧美日韩精品久久久| 9人人澡人人爽人人精品| 亚洲欧洲精品一区二区三区| 一区二区三区在线不卡| 国产日韩欧美一区二区三区在线观看 | 国产精品自拍在线| 国产精品高清一区二区三区|