• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            QuXiao

            每天進步一點點!

              C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
              50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks
            題目來源:

                            PKU 2201 Cartesian Tree

            分類:

                            RMQ

            原文:

             

            Cartesian Tree

            Time Limit: 10000MS


            Memory Limit: 65536K

            Total Submissions: 1196


            Accepted: 423

            Case Time Limit: 2000MS

            Description

            Let us consider a special type of a binary search tree, called a cartesian tree. Recall that a binary search tree is a rooted ordered binary tree, such that for its every node x the following condition is satisfied: each node in its left subtree has the key less then the key of x, and each node in its right subtree has the key greater then the key of x.
            That is, if we denote left subtree of the node x by L(x), its right subtree by R(x) and its key by kx then for each node x we have

            • if y L(x) then ky < kx
            • if z R(x) then kz > kx


            The binary search tree is called cartesian if its every node x in addition to the main key kx also has an auxiliary key that we will denote by ax, and for these keys the heap condition is satisfied, that is

            • if y is the parent of x then ay < ax


            Thus a cartesian tree is a binary rooted ordered tree, such that each of its nodes has a pair of two keys (k, a) and three conditions described are satisfied.
            Given a set of pairs, construct a cartesian tree out of them, or detect that it is not possible.

            Input

            The first line of the input file contains an integer number N -- the number of pairs you should build cartesian tree out of (1 <= N <= 50 000). The following N lines contain two numbers each -- given pairs (ki, ai). For each pair |ki|, |ai| <= 30 000. All main keys and all auxiliary keys are different, i.e. ki != kj and ai != aj for each i != j.

            Output

            On the first line of the output file print YES if it is possible to build a cartesian tree out of given pairs or NO if it is not. If the answer is positive, on the following N lines output the tree. Let nodes be numbered from 1 to N corresponding to pairs they contain as they are given in the input file. For each node output three numbers -- its parent, its left child and its right child. If the node has no parent or no corresponding child, output 0 instead.
            The input ensure these is only one possible tree.

            Sample Input

            7

            5 4

            2 2

            3 9

            0 5

            1 3

            6 6

            4 11

            Sample Output

            YES

            2 3 6

            0 5 1

            1 0 7

            5 0 0

            2 4 0

            1 0 0

            3 0 0

            Source

            Northeastern Europe 2002, Northern Subregion

             

             

             

             

            中文描述:

                            有一種二叉樹,叫笛卡爾樹,樹的節(jié)點有兩個值:kak值滿足二叉排序樹的性質(zhì),a值滿足最小堆的性質(zhì)。即如果某個根節(jié)點root有兩個子節(jié)點leftright,那么left.k < root.k < right.k,且root.a < left.a,root.a < right.a。給你N(1 <= N <= 50 000)個節(jié)點,問你是否可以構(gòu)造出一棵笛卡爾樹。

             

            題目分析與算法模型

                            一開始,自己是想根據(jù)最小堆的性質(zhì),擁有最小a值的那個節(jié)點一定是樹的根,接著再找兩個次小a值的節(jié)點,它們必然是根的兩個子節(jié)點,再根據(jù)k值決定節(jié)點是左兒子還是右兒子,然后再以此類推…………,但是在下一層就不對了。因為并不是樹的下一層節(jié)點的a值一定比上一層節(jié)點的a值大(它們不一定在同一棵子樹)。

                            可以換一個思維,把注意力放在k值上。要知道,如果對一顆二叉排序樹進行前序搜索,k值是從小到大排序的。如果某個節(jié)點是根,那么它左邊的節(jié)點就構(gòu)成左子樹,它右邊的節(jié)點就構(gòu)成右子樹?,F(xiàn)在,那個根節(jié)點是哪一個?就是那個a值最小的節(jié)點!所以,我們可以對k值進行排序,現(xiàn)在整個區(qū)間內(nèi)找到a值最小的節(jié)點,他就是根。接著再在左邊和右邊的區(qū)間內(nèi)各找一個a值最小的節(jié)點,看它們的節(jié)點的k值與根節(jié)點的k值是否滿足二叉排序樹的性質(zhì),如果滿足,就用相同的方法在左、右區(qū)間遞歸建立子樹;如果不滿足,表示無法構(gòu)成笛卡爾樹。


                            接下來的問題就是,如何在一區(qū)間里找到最小的a值?最容易想到的就是O(n)復(fù)雜度的線性查找,但在此題中,N最大為50000,并且當(dāng)在一個較大區(qū)間內(nèi)查找到一個最值后,又要在一個較小的區(qū)間內(nèi)查找另一個最值,一些節(jié)點被查找了多次,造成時間的浪費。那么,怎么高效的進行多次的區(qū)間查詢呢?RMQ是一個不錯的解決方法。大致思想是:先對區(qū)間內(nèi)的數(shù)進行預(yù)處理,計算出從某一下標開始的某一特定長度的最值。當(dāng)查找某一區(qū)間的最值時,就可以把這個區(qū)間分解成一個或兩個已預(yù)先算出最值得區(qū)間,這樣就可以用O(1)的復(fù)雜度算出最值了。(具體講解請查閱相關(guān)資料)

             

            代碼:

            #include <iostream>

            #include <cmath>

            #include <algorithm>

            using namespace std;

             

            const int MAX = 50005;

             

            struct Node

            {

                      int index;

                      int k, a;

                      int parent, left, right;

            };

             

            Node node[MAX];

            int left, right;

            int f[MAX][16];                  //f[i][j] is the index of the min a from i

                                             //to i + 2^j - 1

            int n;

             

            bool cmpByK (Node n1, Node n2)

            {

                      return ( n1.k < n2.k );

            }

             

            bool cmpByIndex (Node n1, Node n2)

            {

                      return ( n1.index < n2.index );

            }

             

            void Input ()

            {

                      int i;

                      scanf("%d", &n);

                      for (i=0; i<n; i++)

                      {

                              scanf("%d%d", &node[i].k, &node[i].a);

                              node[i].index = i + 1;

                      }

            }

             

            int Max (int a, int b)

            {

                      return ( a>b?a:b );

            }

             

             

            int Min (int a, int b)

            {

                      return ( a<b?a:b );

            }

             

             

            void Initial ()

            {

                      int i, k, m;

                      sort(node, node+n, cmpByK);

             

             

                      //RMQ

                      for (i=0; i<n; i++)

                              f[i][0] = i;

             

                      m = floor(log(double(n)) / log(double(2))) + 1;

                      for (k=1; k<m; k++)

                      {

                              for (i=0; i<n; i++)

                              {

                                     f[i][k] = f[i][k-1];

                                     if ( i + (1<<(k-1)) < n )

                                     {

                                             if ( node[f[i][k-1]].a > node[f[i + (1<<(k-1))][k-1]].a )

                                                     f[i][k] = f[i + (1<<(k-1))][k-1];

                                     }

                              }

                      }

            }

             

             

            int MinAIndex (int i, int j)

            {

                      int k;

                      k = floor( log(double(j-i+1)) / log(double(2)) );

                      if (node[f[i][k]].a <= node[f[j - (1<<k) + 1][k]].a)

                              return f[i][k];

                      else

                              return f[j - (1<<k) + 1][k];

            }

             

            bool MakeTree (int i, int j)

            {

                      if ( i == j )

                      {

                              node[i].left = node[i].right = 0;

                              return true;

                      }

                      int rootIndex, leftIndex, rightIndex;

                      bool check1, check2;

                      rootIndex = MinAIndex(i, j);

                     

                      if ( rootIndex != i )

                              leftIndex = MinAIndex(i, rootIndex-1);

                      if ( rootIndex != j )

                              rightIndex = MinAIndex(rootIndex+1, j);

             

                      check1 = true;

                      if ( rootIndex != i && node[rootIndex].k > node[leftIndex].k )

                      {

                              node[rootIndex].left = node[leftIndex].index;

                              node[leftIndex].parent = node[rootIndex].index;

                              check1 = MakeTree(i, rootIndex-1);

                      }

                      check2 = true;

                      if ( rootIndex != j && node[rootIndex].k < node[rightIndex].k )

                      {

                              node[rootIndex].right = node[rightIndex].index;

                              node[rightIndex].parent = node[rootIndex].index;

                              check2 = MakeTree(rootIndex+1, j);

                      }

             

                      return ( check1 && check2 );

            }

                     

            void Solve ()

            {

                      if ( MakeTree(0, n-1) )

                      {

                              printf("YES\n");

                              sort(node, node+n, cmpByIndex);

                              for (int i=0; i<n; i++)

                              {

                                     printf("%d %d %d\n", node[i].parent, node[i].left, node[i].right);

                              }

                      }

                      else

                      {

                              printf("NO\n");

                      }

            }

             

            int main ()

            {

                      Input ();

                      Initial ();

                      Solve ();

             

                      return 0;

            }

             

            posted on 2008-04-25 21:27 quxiao 閱讀(1007) 評論(1)  編輯 收藏 引用 所屬分類: ACM

            評論

            # re: PKU 2201 Cartesian Tree[未登錄] 2009-05-12 12:20 k
            笛卡爾樹在排好序的情況下有o(n)構(gòu)造法  回復(fù)  更多評論
              

            少妇久久久久久久久久| AAA级久久久精品无码片| 嫩草影院久久国产精品| 久久WWW免费人成—看片| 综合久久给合久久狠狠狠97色 | 免费一级欧美大片久久网| 亚洲美日韩Av中文字幕无码久久久妻妇| 国产精品99久久久久久宅男小说| 亚洲精品乱码久久久久久中文字幕| 精品国产91久久久久久久| 久久久久久久亚洲精品 | 日韩精品无码久久久久久| 色综合久久中文色婷婷| 亚洲国产精品无码久久| 久久久久国产一级毛片高清板| 亚洲狠狠婷婷综合久久蜜芽| 久久精品国产99久久久香蕉| 国产精品九九九久久九九| 久久国产劲爆AV内射—百度| 国内精品久久久久影院网站| 久久精品国产亚洲av麻豆小说 | 中文字幕亚洲综合久久菠萝蜜| 久久国产精品99精品国产987| 久久精品国产精品亚洲精品 | 国产精品一久久香蕉国产线看观看| 久久亚洲国产成人精品无码区| 91性高湖久久久久| 久久国产精品-国产精品| 国产精品对白刺激久久久| 一本一道久久综合狠狠老| 性高朝久久久久久久久久| 久久精品无码av| 九九久久精品无码专区| 99热都是精品久久久久久| 日韩精品国产自在久久现线拍| 久久精品九九亚洲精品| 久久人人爽人人爽人人片av高请| 久久精品九九亚洲精品| 久久精品国产半推半就| 精品欧美一区二区三区久久久| 久久精品人人做人人爽电影|