青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

QuXiao

每天進步一點點!

  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
  50 隨筆 :: 0 文章 :: 27 評論 :: 0 Trackbacks

PKU 1639 Picnic Planning解題報告

 

分類:

圖論、最小度限制生成樹

 

原題:

Picnic Planning

Time Limit: 5000MS

Memory Limit: 10000K

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form
Total miles driven: xxx
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10

Alphonzo Bernardo 32

Alphonzo Park 57

Alphonzo Eduardo 43

Bernardo Park 19

Bernardo Clemenzi 82

Clemenzi Park 65

Clemenzi Herb 90

Clemenzi Eduardo 109

Park Herb 24

Herb Eduardo 79

3

Sample Output

Total miles driven: 183

 

 

題目大意:

一些人想從各自的家中開車到一個地方野餐,每個人的家中都可以容納無限多的車子,每個人的車子可以容納無限多的人。每個人可以先開車到另一人家中,將車停在那人家中,兩人(或多人)再開同一輛車開往目的地。但野餐的地方只有有限個停車位k,告訴你一些路程的長度,問你將所有人都聚集再野餐地點,所使用的最短路程是多少。

 

思路:

因為題目中說到,一個人可以先開車到其他人家中,然后他們再一起開車前往目的地,所以將問題抽象出來,將各人的家和目的地看作點,將各個路程看作邊,若沒有目的地停車位(點的度)的限制,問題就可以轉化為求最小生成樹的問題。但加上了對某一點度的限制,問題就變得復雜了。

假設,若我們將度限制條件放在一邊,直接求最小生成樹。如果在最小生成樹中,目的地所在點的度數已經滿足degree <= k,那么度限制生成樹就已經得到了。因為不可能有比它權值和更小的生成樹了,并且點的度數滿足條件。

還有一種情況,那就是先按最小生成樹算法得到的生成樹中,目的地所在點的度數degree > k,那么很自然的,我們就要想到刪去degree-k條樹中與規定點相連的邊,使得它滿足度限制要求。每刪去邊之后,都要再加上一條邊,否則圖就會不連通,但是,又應該怎樣刪邊呢?假設,規定點的度數為t,那么就有t根與規定點相連的子樹T1T2、……、Tt,若刪去Ti與規定點相連的那條邊,Ti這棵子樹就“懸空”了,必須將Ti這棵樹“架”到其他子樹上才可以。經過這樣一次的“刪添”操作之后,修改之后的圖仍然是棵樹,但規定點的度數減少了1,只要這樣進行t-k次,就可以得到滿足條件的度限制生成樹了。但怎樣保證最小呢?只要在每次的“刪添”操作時,保證“添”的邊的權值減去“刪”的邊的權值的差值(必大于等于0)最小就可以了。

除了這種方法,lrj的書上還介紹了另一種方法。其大致思想是:現將規定點以及與它相連的邊都去掉,再在剩下的圖中求出每個連通分量的最小生成樹,在進行“差額最小添刪操作”,求出滿足度限制的情況下的可能的權值,在其中不斷更新樹的權值和。具體算法將黑書P300~P303

 

 

代碼:

 

#include <iostream>

#include <map>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

 

const int MAX = 50;

 

struct Edge

{

         int a, b;

         int len;

};

 

vector<Edge> edge;

map<string, int> nameIndex;

int G[MAX][MAX];

int tree[MAX][MAX];

int n, m, k;

int parkIndex;

int degree[MAX];

int treeDegree[MAX];

int p[MAX];

int inTree[MAX];

int rank[MAX];

int minCost;

int treeTag[MAX];             //對子樹進行標記

int visited[MAX];

int subTreeNum;

 

bool operator< (Edge e1, Edge e2)

{

         return ( e1.len < e2.len );

}

 

 

void Input ()

{

         string a, b;

         int index1, index2;

         int len;

         Edge e;

         n = 0;

         cin>>m;

         for (int i=0; i<m; i++)

         {

                   cin>>a>>b>>len;

                   if ( nameIndex.find(a) == nameIndex.end() )

                   {

                            nameIndex[a] = n;

                            index1 = n;

                            n ++;

                   }

                   else

                   {

                            index1 = nameIndex[a];

                   }

 

                   if ( nameIndex.find(b) == nameIndex.end() )

                   {

                            nameIndex[b] = n;

                            index2 = n;

                            n ++;

                   }

                   else

                   {

                            index2 = nameIndex[b];

                   }

 

                   if ( a == "Park" )

                            parkIndex = index1;

                   if ( b == "Park" )

                            parkIndex = index2;

                   G[index1][index2] = G[index2][index1] = len;

                   e.a = index1;

                   e.b = index2;

                   e.len = len;

                   edge.push_back(e);

                   degree[index1] ++;

                   degree[index2] ++;

         }

 

         cin>>k;

}

 

int Find (int x)

{

    int t, root, w;

    t = x;

    while ( p[t] != -1 )

                   t = p[t];

    root = t;

    t = x;

    while ( p[t] != -1 )

    {

                   w = p[t];

                   p[t] = root;

                   t = w;

    }

        

    return root;

}

 

void Union (int x, int y)

{

         int r1, r2;

         r1 = Find(x);

         r2 = Find(y);

        

         if ( rank[r1] >= rank[r2] )

         {

                   p[r2] = r1;

                   if ( rank[r1] == rank[r2] )

                            rank[r1]++;

         }

         else

                   p[r1] = r2;

}

 

 

bool Kruskal ()

{

         int i, r1, r2, k, total, Max;

         memset(p, -1, sizeof(p));

         memset(inTree, 0, sizeof(inTree));

         memset(rank, 1, sizeof(rank));

         //qsort(edge, edgeNum, sizeof(edge[0]), cmp);

         sort(edge.begin(), edge.end());

 

    Max = -1;

         k = 0;

         minCost = 0;

         for (i=0; i<edge.size() && k<n-1; i++)

         {

 

                   r1 = Find(edge[i].a);

                   r2 = Find(edge[i].b);

                   if ( r1 != r2 )

                   {

                            tree[edge[i].a][edge[i].b] = tree[edge[i].b][edge[i].a] = edge[i].len;

                            //cout<<edge[i].a<<' '<<edge[i].b<<endl;

                            Union(r1, r2);

                            inTree[i] = 1;

                            treeDegree[edge[i].a] ++;

                            treeDegree[edge[i].b] ++;

                            k++;

                            minCost += edge[i].len;

                   }

         }

 

 

         if ( k == n - 1 )

        return true;

         else

                   return false;

}

 

 

void DFS (int cur, int index)

{

         visited[cur] = 1;

         treeTag[cur] = index;

         int i;

         for (i=0; i<n; i++)

         {

                   if ( tree[cur][i] && !visited[i] )

                   {

                            DFS (i, index);

                   }

         }

}

 

void MakeTreeTag ()

{

         int i;

         subTreeNum = 0;

         memset(visited, 0, sizeof(visited));

         visited[parkIndex] = 1;

         memset(treeTag, -1, sizeof(treeTag));

         for (i=0; i<n; i++)

         {

                   if ( tree[parkIndex][i] )

                            DFS (i, subTreeNum++);

         }

}

 

//將原來的子樹架在另一棵樹上

void ChangeTreeTag (int pre, int cur)

{

         int i;

         for (i=0; i<n; i++)

                   if ( treeTag[i] == pre )

                            treeTag[i] = cur;

}

 

//從當前子樹查找與其他子樹相連的最小邊

Edge FindMinEdge (int curTag)

{

         int i;

         Edge e;

         e.len = -1;

         for (i=0; i<edge.size(); i++)

         {

                   if ( ((treeTag[edge[i].a] == curTag && treeTag[edge[i].b] != curTag && edge[i].b != parkIndex)

                            || (treeTag[edge[i].b] == curTag && treeTag[edge[i].a] != curTag && edge[i].a != parkIndex) )

                            && G[edge[i].a][edge[i].b] )

                   {

                            if ( e.len == -1 || edge[i].len < e.len )

                            {

                                     e.a = edge[i].a;

                                     e.b = edge[i].b;

                                     e.len = edge[i].len;

                            }

                   }

         }

         return e;

}

 

 

void DeleteAdd ()

{

         int i, minDif, delTag, newTag;

         minDif = -1;

         Edge addEdge, delEdge, temp;

         for (i=0; i<n; i++)

         {

                   if ( i == parkIndex )

                            continue;

                   temp = FindMinEdge(treeTag[i]);

                   if ( temp.len == -1 )

                            continue;

                   if ( tree[parkIndex][i] && ( minDif == -1 || temp.len - tree[parkIndex][i] < minDif) )

                   {

                            minDif = temp.len - tree[parkIndex][i];

                            addEdge = temp;

                            delEdge.a = parkIndex;

                            delEdge.b = i;

                            delTag = treeTag[i];

                            if ( treeTag[addEdge.a] != delTag )

                                     newTag = treeTag[addEdge.a];

                            else

                                     newTag = treeTag[addEdge.b];

                   }

         }

 

         tree[delEdge.a][delEdge.b] = tree[delEdge.b][delEdge.a] = 0;

         G[delEdge.a][delEdge.b] = G[delEdge.b][delEdge.a] = 0;

         tree[addEdge.a][addEdge.b] = tree[addEdge.b][addEdge.a] = addEdge.len;

        

         minCost += minDif;

 

         ChangeTreeTag(delTag, newTag);

}

 

 

void Solve ()

{

         Kruskal();

         if ( treeDegree[parkIndex] <= k )

         {

                   cout<<"Total miles driven: "<<minCost<<endl;

                   return;

         }

 

         MakeTreeTag ();

 

         int i;

         for (i=0; i<treeDegree[parkIndex]-k; i++)

                   DeleteAdd();

 

         cout<<"Total miles driven: "<<minCost<<endl;

}

 

int main ()

{

         Input ();

         Solve ();

 

         return 0;

}

posted on 2008-07-30 19:10 quxiao 閱讀(979) 評論(1)  編輯 收藏 引用 所屬分類: ACM

評論

# re: PKU 1639 Picnic Planning 2011-03-28 19:28 Chengsir
如果單單從算法來考慮,要求求的是根的出度剛好為 k的最小生成樹,那應該怎么求呀/.  回復  更多評論
  

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            国产日韩在线一区二区三区| 韩日成人av| 在线一区观看| 99精品福利视频| 欧美网站在线| 性xx色xx综合久久久xx| 香蕉成人伊视频在线观看| 国产一区二区三区视频在线观看| 欧美在线free| 久久久久久久综合色一本| 在线观看一区二区精品视频| 欧美成人午夜77777| 欧美区高清在线| 亚洲欧美国产精品专区久久| 午夜在线成人av| 亚洲国产成人91精品| 日韩视频在线免费| 国产一区二区剧情av在线| 麻豆精品传媒视频| 欧美日韩精品不卡| 欧美在线观看一区二区| 蜜桃精品一区二区三区 | 午夜久久美女| 精品成人国产| 亚洲伦伦在线| 国内精品一区二区| 亚洲国产99| 国产精品综合不卡av| 欧美成人激情视频免费观看| 欧美日韩在线播放| 免费成人av| 国产精品a久久久久久| 免费观看成人鲁鲁鲁鲁鲁视频| 欧美精品v日韩精品v国产精品| 欧美在线免费播放| 欧美激情第一页xxx| 久久国产精品99国产精| 欧美国产日本韩| 久久久久久久一区| 欧美三日本三级少妇三99| 女仆av观看一区| 国产精品永久入口久久久| 亚洲第一天堂av| 国产综合久久| 亚洲视频在线观看免费| 亚洲国产欧美日韩精品| 欧美一区成人| 亚洲影视在线播放| 欧美精品一区二区三区一线天视频| 久久精品国产精品亚洲| 欧美午夜精品理论片a级大开眼界| 老巨人导航500精品| 国产欧美二区| 亚洲专区一区二区三区| 亚洲视频精选在线| 欧美激情国产日韩精品一区18| 久久视频国产精品免费视频在线| 欧美视频免费| 亚洲三级毛片| 亚洲毛片视频| 欧美国产免费| 亚洲激情视频在线播放| 亚洲国产精品视频| 久热精品视频在线| 欧美高清日韩| 亚洲精品黄色| 欧美国产一区在线| 亚洲国产精品久久久| 亚洲国产综合在线| 欧美黑人一区二区三区| 亚洲黄一区二区| 一本综合久久| 欧美美女操人视频| 亚洲免费观看高清完整版在线观看| 亚洲精品一区在线观看| 欧美精品久久久久久久久久| 最新热久久免费视频| 亚洲免费观看在线观看| 欧美大香线蕉线伊人久久国产精品| 欧美激情一区二区在线| 亚洲精品一区二区在线| 欧美日韩国产bt| 一区二区三区www| 亚洲欧美日韩一区| 国产日韩欧美电影在线观看| 久久高清一区| 亚洲激情在线播放| 亚洲在线黄色| 黄网站免费久久| 美女尤物久久精品| 亚洲美女在线看| 久久成人免费视频| 尤物在线观看一区| 欧美精品一区二区精品网| 中文国产亚洲喷潮| 久久久美女艺术照精彩视频福利播放 | 蜜臀久久99精品久久久画质超高清 | 欧美日韩中文| 香蕉久久a毛片| 亚洲电影免费观看高清完整版| 一二三区精品福利视频| 国产精品老女人精品视频| 久久久99国产精品免费| 亚洲黄色av| 久久久精品国产一区二区三区 | 在线日韩成人| 国产精品高清网站| 久久综合久久综合这里只有精品| 最新日韩在线| 久久久人人人| 日韩网站在线看片你懂的| 国产老女人精品毛片久久| 免费不卡在线观看av| 亚洲在线视频观看| 亚洲精品国产系列| 美女图片一区二区| 亚洲综合社区| 亚洲精品免费在线播放| 国产日产精品一区二区三区四区的观看方式| 久久久7777| 欧美一区国产二区| 亚洲网友自拍| 99视频在线精品国自产拍免费观看| 久久久欧美一区二区| 亚洲欧美成人精品| 日韩一级片网址| 精品动漫av| 国产亚洲亚洲| 国产乱码精品一区二区三区不卡| 欧美区视频在线观看| 老司机aⅴ在线精品导航| 欧美一级久久久| 亚洲一级免费视频| 亚洲精品色婷婷福利天堂| 欧美freesex8一10精品| 久久久久国产一区二区三区| 午夜精品亚洲一区二区三区嫩草| 一区二区精品在线| 亚洲精品国产拍免费91在线| 亚洲二区在线观看| 激情一区二区| 一区二区亚洲| 亚洲福利视频在线| 在线日韩中文字幕| 在线成人国产| 亚洲人成在线观看一区二区| 永久91嫩草亚洲精品人人| 一区二区视频在线观看| 亚洲第一综合天堂另类专| 亚洲国产成人精品久久久国产成人一区 | 免费久久99精品国产| 久久资源在线| 免费在线观看精品| 欧美国产日韩精品| 欧美片第一页| 国产精品嫩草99a| 国产视频在线观看一区二区三区| 国产精品夜夜嗨| 国产一区二区三区四区hd| 国产亚洲福利社区一区| 精品不卡一区二区三区| 亚洲国产精品小视频| 亚洲看片网站| 午夜亚洲伦理| 六十路精品视频| 欧美黄色aaaa| 在线视频日韩| 久久精品视频99| 欧美老女人xx| 国产精品成人一区二区| 国产亚洲精品高潮| 亚洲日本电影| 亚洲欧美日韩精品综合在线观看| 久久精品水蜜桃av综合天堂| 你懂的国产精品| 夜夜嗨一区二区| 久久国产精品久久久久久| 欧美高清在线一区| 国产精品综合视频| 亚洲欧洲一区| 欧美一区二区视频在线观看| 看片网站欧美日韩| 亚洲日本成人| 欧美在线视频在线播放完整版免费观看 | 9人人澡人人爽人人精品| 欧美专区在线观看| 欧美久久综合| 好吊视频一区二区三区四区 | 国产亚洲人成a一在线v站| 亚洲国内欧美| 久久精品国产在热久久 | 久久av红桃一区二区小说| 欧美大片在线观看| 亚洲欧美日韩国产另类专区| 毛片一区二区三区| 国产一区二区三区奇米久涩| 一区二区三区高清| 欧美成人亚洲成人| 欧美一级理论片| 国产精品久久久一区麻豆最新章节|