• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
              C++博客 :: 首頁 :: 新隨筆 ::  ::  :: 管理

            叉積

            Posted on 2010-08-01 12:04 Kevin_Zhang 閱讀(349) 評論(0)  編輯 收藏 引用

             

            向量點積與叉積的定義及應用2008-11-14 09:18向量的點積:
            假設向量u(ux, uy)和v(vx, vy),u和v之間的夾角為α,從三角形的邊角關系等式出發,可作出如下簡單推導:
            |u - v||u - v| = |u||u| + |v||v| - 2|u||v|cosα
            ===>
            (ux - vx)2 + (uy - vy)2 = ux2 + uy2 +vx2+vy2- 2|u||v|cosα
            ===>
            -2uxvx - 2uyvy = -2|u||v|cosα
            ===>
            cosα = (uxvx + uyvy) / (|u||v|)
            這樣,就可以根據向量u和v的坐標值計算出它們之間的夾角。
            定義u和v的點積運算: u . v = (uxvx + uyvy),
            上面的cosα可簡寫成: cosα = u . v / (|u||v|)
            當u . v = 0時(即uxvx + uyvy = 0),向量u和v垂直;當u . v > 0時,u和v之間的夾角為銳角;當u . v < 0時,u和v之間的夾角為鈍角。
            可以將運算從2維推廣到3維。
            

            向量的叉積: 假設存在向量u(ux, uy, uz), v(vx, vy, vz), 求同時垂直于向量u, v的向量w(wx, wy, wz). 因為w與u垂直,同時w與v垂直,所以w . u = 0, w . v = 0; 即 uxwx + uywy + uzwz = 0; vxwx + vywy + vzwz = 0; 分別削去方程組的wy和wx變量的系數,得到如下兩個等價方程式: (uxvy - uyvx)wx = (uyvz - uzvy)wz (uxvy - uyvx)wy = (uzvx - uxvz)wz 于是向量w的一般解形式為: w = (wx, wy, wz) = ((uyvz - uzvy)wz / (uxvy - uyvx), (uzvx - uxvz)wz / (uxvy - uyvx), wz) = (wz / (uxvy - uyvx) * (uyvz - uzvy, uzvx - uxvz, uxvy - uyvx)) 因為: ux(uyvz - uzvy) + uy(uzvx - uxvz) + uz(uxvy - uyvx) = uxuyvz - uxuzvy + uyuzvx - uyuxvz + uzuxvy - uzuyvx = (uxuyvz - uyuxvz) + (uyuzvx - uzuyvx) + (uzuxvy - uxuzvy) = 0 + 0 + 0 = 0 vx(uyvz - uzvy) + vy(uzvx - uxvz) + vz(uxvy - uyvx) = vxuyvz - vxuzvy + vyuzvx - vyuxvz + vzuxvy - vzuyvx = (vxuyvz - vzuyvx) + (vyuzvx - vxuzvy) + (vzuxvy - vyuxvz) = 0 + 0 + 0 = 0 由此可知,向量(uyvz - uzvy, uzvx - uxvz, uxvy - uyvx)是同時垂直于向量u和v的。 為此,定義向量u = (ux, uy, uz)和向量 v = (vx, vy, vz)的叉積運算為:u x v = (uyvz - uzvy, uzvx - uxvz, uxvy - uyvx) 上面計算的結果可簡單概括為:向量u x v垂直于向量u和v。 根據叉積的定義,沿x坐標軸的向量i = (1, 0, 0)和沿y坐標軸的向量j = (0, 1, 0)的叉積為: i x j = (1, 0, 0) x (0, 1, 0) = (0 * 0 - 0 * 1, 0 * 0 - 1 * 0, 1 * 1 - 0 * 0) = (0, 0, 1) = k 同理可計算j x k: j x k = (0, 1, 0) x (0, 0, 1) = (1 * 1 - 0 * 0, 0 * 0 - 0 * 1, 0 * 0 - 0 * 0) = (1, 0, 0) = i 以及k x i: k x i = (0, 0, 1) x (1, 0, 0) = (0 * 0 - 1 * 0, 1 * 1 - 0 * 0, 0 * 0 - 0 * 0) = (0, 1, 0) = j 由叉積的定義,可知: v x u = (vyuz - vzuy, vzux - vxuz, vxuy - vyux) = - (u x v)




























             

            久久免费精品视频| 色综合久久久久网| 久久狠狠爱亚洲综合影院| 少妇无套内谢久久久久| 无码国内精品久久人妻| 一本大道加勒比久久综合| 国产精品女同一区二区久久| 久久午夜无码鲁丝片午夜精品| 久久精品人人做人人爽电影| 久久精品国产亚洲av水果派| 精品人妻伦九区久久AAA片69| 性做久久久久久久久浪潮| 国产精品久久久久久久久鸭 | 香蕉久久AⅤ一区二区三区| 国产精品久久久久久久久软件| 潮喷大喷水系列无码久久精品| 久久久久久毛片免费看| 久久久久久久久久久| 国产成人精品综合久久久| 亚洲国产精品无码久久98| 久久久久久国产精品美女 | 91精品国产91久久久久久蜜臀| 久久久中文字幕日本| 久久精品免费一区二区三区| 亚洲乱码精品久久久久..| 久久性生大片免费观看性| 66精品综合久久久久久久| 99久久精品国产麻豆| 久久亚洲私人国产精品| 久久人人爽人人人人片av| 色老头网站久久网| 欧美久久亚洲精品| 久久久精品日本一区二区三区| 亚洲国产天堂久久综合网站| 久久AV高清无码| 国内精品久久久久久久97牛牛 | 亚洲人成无码www久久久| 国内精品久久久久久久影视麻豆| 日本福利片国产午夜久久| 国产一久久香蕉国产线看观看| 99久久无色码中文字幕|