青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

子彈 の VISIONS

NEVER back down ~~

C++博客 首頁 新隨筆 聯系 聚合 管理
  112 Posts :: 34 Stories :: 99 Comments :: 0 Trackbacks

Software quality

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Software development process
Activities and steps
Requirements · Architecture
Design · Implementation
Testing · Deployment
Models
Agile · Cleanroom · Iterative · RAD
RUP · Spiral · Waterfall · XP · Scrum
Supporting disciplines
Configuration management
Documentation
Quality assurance (SQA)
Project management
User experience design
This box: view  talk  edit

In the context of software engineering, software quality measures how well software is designed (quality of design), and how well the software conforms to that design (quality of conformance),[1] although there are several different definitions.

For their certification in software quality engineering (CSQE), the American Society for Quality (ASQ) lists seven major topic areas in the 2008 CSQE body of knowledge.

  • General [quality] knowledge
  • Software quality management
  • Systems and software engineering processes
  • Project management
  • Software metrics and analysis
  • Software verification and validation (V&V)
  • Software configuration management

Whereas quality of conformance is concerned with implementation (see Software Quality Assurance), quality of design measures how valid the design and requirements are in creating a worthwhile product.[2]

Contents

[hide]

[edit] Definition

One of the problems with Software Quality is that "everyone feels they understand it."[3] In addition to the definition above by Dr. Roger S. Pressman, other software engineering experts have given several definitions.

A definition in Steve McConnell's Code Complete similarly divides software into two pieces: internal and external quality characteristics. External quality characteristics are those parts of a product that face its users, where internal quality characteristics are those that do not.[4]

Another definition by Dr. Tom DeMarco says "a product's quality is a function of how much it changes the world for the better."[5] This can be interpreted as meaning that user satisfaction is more important than anything in determining software quality.[1]

Another definition, coined by Gerald Weinberg in Quality Software Management: Systems Thinking, is "Quality is value to some person." This definition stresses that quality is inherently subjective - different people will experience the quality of the same software very differently. One strength of this definition is the questions it invites software teams to consider, such as "Who are the people we want to value our software?" and "What will be valuable to them?".

[edit] History

[edit] Software product quality

[edit] Source code quality

To a computer, there is no real concept of "well-written" source code. However, to a human, the way a program is written can have some important consequences for the human maintainers. Many source code programming style guides, which stress readability and some language-specific conventions are aimed at the maintenance of the software source code, which involves debugging and updating. Other issues also come into considering whether code is well written, such as the logical structuring of the code into more manageable sections.

Methods to improve the quality: refactoring.

[edit] Software reliability

Software reliability is an important facet of software quality. It is defined as "the probability of failure-free operation of a computer program in a specified environment for a specified time".[6]

One of reliability's distinguishing characteristics is that it is objective, measurable, and can be estimated, whereas much of software quality consists of subjective criteria.[7] This distinction is especially important in the discipline of Software Quality Assurance. These measured criteria are typically called software metrics.

[edit] History

With software embedded into many devices today, software failure has caused more than inconvenience. Software errors have even caused human fatalities. The causes have ranged from poorly designed user interfaces to direct programming errors. An example of a programming error that lead to multiple deaths is discussed in Dr. Leveson's paper [1] (PDF). This has resulted in requirements for development of some types software. In the United States, both the Food and Drug Administration (FDA) and Federal Aviation Administration (FAA) have requirements for software development.

[edit] The goal of reliability

The need for a means to objectively determine software quality comes from the desire to apply the techniques of contemporary engineering fields to the development of software. That desire is a result of the common observation, by both lay-persons and specialists, that computer software does not work the way it ought to. In other words, software is seen to exhibit undesirable behavour, up to and including outright failure, with consequences for the data which is processed, the machinery on which the software runs, and by extension the people and materials which those machines might negatively affect. The more critical the application of the software to economic and production processes, or to life-sustaining systems, the more important is the need to assess the software's reliability.

Regardless of the criticality of any single software application, it is also more and more frequently observed that software has penetrated deeply into most every aspect of modern life through the technology we use. It is only expected that this infiltration will continue, along with an accompanying dependency on the software by the systems which maintain our society. As software becomes more and more crucial to the operation of the systems on which we depend, the argument goes, it only follows that the software should offer a concomitant level of dependability. In other words, the software should behave in the way it is intended, or even better, in the way it should.

[edit] The challenge of reliability

The circular logic of the preceding sentence is not accidental — it is meant to illustrate a fundamental problem in the issue of measuring software reliability, which is the difficulty of determining, in advance, exactly how the software is intended to operate. The problem seems to stem from a common conceptual error in the consideration of software, which is that software in some sense takes on a role which would otherwise be filled by a human being. This is a problem on two levels. Firstly, most modern software performs work which a human could never perform, especially at the high level of reliability that is often expected from software in comparison to humans. Secondly, software is fundamentally incapable of most of the mental capabilities of humans which separate them from mere mechanisms: qualities such as adaptability, general-purpose knowledge, a sense of conceptual and functional context, and common sense.

Nevertheless, most software programs could safely be considered to have a particular, even singular purpose. If the possibility can be allowed that said purpose can be well or even completely defined, it should present a means for at least considering objectively whether the software is, in fact, reliable, by comparing the expected outcome to the actual outcome of running the software in a given environment, with given data. Unfortunately, it is still not known whether it is possible to exhaustively determine either the expected outcome or the actual outcome of the entire set of possible environment and input data to a given program, without which it is probably impossible to determine the reliability with any certainty.

However, various attempts are in the works to attempt to rein in the vastness of the space of programs and theoretical descriptions of programs. Such attempts to improve software reliability can be applied at different stages of a development, in the case of real software. These stages principally include: requirements, design, programming, testing, and run time evaluation. The study of theoretical software reliability is predominantly concerned with the concept of correctness, a mathematical field of computer science which is an outgrowth of language and automata theory.

[edit] Reliability in program development

[edit] Requirements

A program cannot be expected to work as desired if the developers of the program do not, in fact, know the

Whether a software projects. In situ with the formalization effort is an attempt to help inform non-specialists, particularly non-programmers, who commission software projects without sufficient knowledge of what computer software is in fact capable. Communicating this knowledge is made more difficult by the fact that, as hinted above, even programmers cannot always know in advance what is actually possible for software in advance of trying.

[edit] Design

While requirements are meant to specify what a program should do, design is meant, at least at a high level, to specify how the program should do it. The usefulness of design is also questioned by some, but those who look to formalize the process of ensuring reliability often offer good software design processes as the most significant means to accomplish it. Software design usually involves the use of more abstract and general means of specifying the parts of the software and what they do. As such, it can be seen as a way to break a large program down into many smaller programs, such that those smaller pieces together do the work of the whole program.

The purposes of high-level design are as follows. It separates what are considered to be problems of architecture, or overall program concept and structure, from problems of actual coding, which solve problems of actual data processing. It applies additional constraints to the development process by narrowing the scope of the smaller software components, and thereby — it is hoped — removing variables which could increase the likelihood of programming errors. It provides a program template, including the specification of interfaces, which can be shared by different teams of developers working on disparate parts, such that they can know in advance how each of their contributions will interface with those of the other teams. Finally, and perhaps most controversially, it specifies the program independently of the implementation language or languages, thereby removing language-specific biases and limitations which would otherwise creep into the design, perhaps unwittingly on the part of programmer-designers.

[edit] Programming

The history of computer programming language development can often be best understood in the light of attempts to master the complexity of computer programs, which otherwise becomes more difficult to understand in proportion (perhaps exponentially) to the size of the programs. (Another way of looking at the evolution of programming languages is simply as a way of getting the computer to do more and more of the work, but this may be a different way of saying the same thing.) Lack of understanding of a program's overall structure and functionality is a sure way to fail to detect errors in the program, and thus the use of better languages should, conversely, reduce the number of errors by enabling a better understanding.

Improvements in languages tend to provide incrementally what software design has attempted to do in one fell swoop: consider the software at ever greater levels of abstraction. Such inventions as statement, sub-routine, file, class, template, library, component and more have allowed the arrangement of a program's parts to be specified using abstractions such as layers, hierarchies and modules, which provide structure at different granularities, so that from any point of view the program's code can be imagined to be orderly and comprehensible.

In addition, improvements in languages have enabled more exact control over the shape and use of data elements, culminating in the abstract data type. These data types can be specified to a very fine degree, including how and when they are accessed, and even the state of the data before and after it is accessed..

[edit] Testing

Main article: Software Testing

Software testing, when done correctly, can increase overall software quality of conformance by testing that the product conforms to its requirements. Testing includes, but is not limited to:

  1. Unit Testing
  2. Functional Testing
  3. Performance Testing
  4. Fail over Testing
  5. Usability Testing

A number of agile methodologies use testing early in the development cycle to ensure quality in their products. For example, the test-driven development practice, where tests are written before the code they will test, is used in Extreme Programming to ensure quality.

[edit] Run time

Run time reliability determinations are similar to tests, but go beyond simple confirmation of behavior to the evaluation of qualities such as performance and interoperability with other code or particular hardware configurations.

[edit] Software Quality Factors

A software quality factor is a non-functional requirement for a software program which is not called up by the customer's contract, but is nevertheless desirable and enhances the quality of the software program.

Some software quality factors are:

Understandability
The purpose of the software product is clear. This goes further than just a statement of purpose - all of the design and user documentation must be clearly written so that it is easily understandable. Obviously, the user context must be taken into account, e.g. if the software product is to be used by software engineers it is not required to be understandable to lay users.
Completeness
All parts of the software product are present and each of its parts are fully developed. For example, if the code calls a sub-routine from an external library, the software package must provide reference to that library and all required parameters must be passed. All required input data must be available.
Conciseness
No excessive information is present. This is important where memory capacity is limited, and it is important to reduce lines of code to a minimum. It can be improved by replacing repeated functionality by one sub-routine or function which achieves that functionality. This quality factor also applies to documentation.
Portability
The software product can be easily operated or made to operate on multiple computer configurations. This can be between multiple hardware configurations (such as server hardware and personal computers), multiple operating systems (e.g. Microsoft Windows and Linux-based operating systems), or both.
Consistency
The software contains uniform notation, symbology and terminology within itself.
Maintainability
The product facilitates updating to satisfy new requirements. The software product that is maintainable is simple, well-documented, and should have spare capacity for processor memory usage.
Testability
The software product facilitates the establishment of acceptance criteria and supports evaluation of its performance. Such a characteristic must be built-in during the design phase if the product is to be easily testable, since a complex design leads to poor testability.
Usability
The product is convenient and practicable to use. The component of the software which has most impact on this is the user interface (UI), which for best usability is usually graphical.
Reliability
The software can be expected to perform its intended functions satisfactorily over a period of time. Reliability also encompasses environmental considerations in that the product is required to perform correctly in whatever conditions it is operated in; this is sometimes termed robustness.
Structure
The software possesses a definite pattern of organization in its constituent parts.
Efficiency
The software product fulfills its purpose without wasting resources, e.g. memory or CPU cycles.
Security
The product is able to protect data against unauthorized access and to withstand malicious interference with its operations. Besides the presence of appropriate security mechanisms such as authentication, access control and encryption, security also implies reliability in the face of malicious, intelligent and adaptive attackers.

[edit] Measurement of software quality factors

There are varied perspectives within the field on measurement. There are a great many measures that are valued by some professionals, or in some contexts, that are decried as harmful by others. Some believe that quantitative measures of software quality are essential. Others believe that contexts where quantitative measures are useful are quite rare, and so prefer qualitative measures. Several authorities in the field of software testing have written about these difficulties, including Dr. Cem Kaner [2](PDF) and Douglas Hoffman [3](PDF).

One example of a popular metric is the number of faults encountered in the software. Software that contains few faults is considered by some to have higher quality than software that contains many faults. Questions that can help determine the usefulness of this metric in a particular context include:

  1. What constitutes 'many faults'? Does this differ depending on the purpose of the software (e.g. blogging software v. navigational software)? Does this take into account the size and complexity of the software?
  2. Does this account for the importance of the bugs (and the importance to the stakeholders of the people those bugs bug)? Does one try to weight this measure by the severity of the fault, or the incidence of users it effects? If so, how? And if not, how does one know that 100 faults discovered is better than 1000?
  3. If the count of faults being discovered is shrinking, how does one know what this means? For example, does it mean that the product is now of higher quality that it was before? Or that this is a smaller/less ambitious change than before? Or that less tester-hours have gone into the project than before? Or that this project was tested by less skilled testers than before? Or that the team has discovered that less faults reported is in their interest?

This last question points to an especially difficult one to manage. All software quality metrics are in some sense measures of human behavior, since humans create software[4](PDF). If a team discovers that they will benefit from a drop in the number of reported bugs, there is a strong tendency for the team to start reporting less defects. That may mean that email begins to circumvent the bug tracking system, or that four or five bugs get lumped into one bug report, or that testers learn not to report minor annoyances. The difficulty is measuring what is intended to be measured, without creating incentives for software programmers and testers to consciously or unconsciously "game" the measurements.

Software Quality Factors cannot be measured because of their vague description. It is necessary to find measures, or metrics, which can be used to quantify them as non-functional requirements. For example, reliability is a software quality factor, but cannot be evaluated in its own right. However there are related attributes to reliability, which can indeed be measured. Such attributes are mean time to failure, rate of failure occurrence, availability of the system. Similarly, an attribute of portability is the number of target dependent statements in a program.

A scheme which could be used for evaluating software quality factors is given below. For every characteristic, there are a set of questions which are relevant to that characteristic. Some type of scoring formula could be developed based on the answers to these questions, from which a measure of the characteristic may be obtained.

[edit] Understandability

Are variable names descriptive of the physical or functional property represented? Do uniquely recognizable functions contain adequate comments so that their purpose is clear? Are deviations from forward logical flow adequately commented? Are all elements of an array functionally related?

[edit] Conciseness

Is all code reachable? Is any code redundant? How many statements within loops could be placed outside the loop, thus reducing computation time? Are branch decisions too complex?

[edit] Portability

  • Does the program depend upon system or library routines unique to a particular installation? Have machine-dependent statements been flagged and commented? Has dependency on internal bit representation of alphanumeric or special characters been avoided?
  • The effort required to transfer the program from one hardware/software system environment to another.

[edit] Consistency

Is one variable name used to represent different physical entities in the program? Does the program contain only one representation for physical or mathematical constants? Are functionally similar arithmetic expressions similarly constructed? Is a consistent scheme for indentation used?

[edit] Maintainability

Maintainability of a software is highly dependent on the process used to develop it. Assessing the quality of the software maintenance process is done using a software maintenance maturity model S3M.

Assessing the maintainability of the software product is done by assessing four different perspectives:its ANALYZABILITY, its CHANGEABILITY, its STABILITY afer a change, and its TESTABILITY.

[edit] Testability

Are complex structures employed in the code? Does the detailed design contain clear pseudo-code? Is the pseudo-code at a higher level of abstraction than the code? If tasking is used in concurrent designs, are schemes available for providing adequate test cases?

[edit] Usability

Is a GUI used? Is there adequate on-line help? Is a user manual provided? Are meaningful error messages provided? Effort required to learn, operate, prepare input, and interpret output of a program.

[edit] Reliability

  • Are loop indexes range tested? Is input data checked for range errors? Is divide-by-zero avoided? Is exception handling provided?
  • The extent to which a program can be expected to perform its intended function with required precision.

[edit] Structures

Is a block-structured programming language used? Are modules limited in size? Have the rules for transfer of control between modules been established and followed?

[edit] Efficiency

  • Have functions been optimized for speed? Have repeatedly used blocks of code been formed into sub-routines? Checked for any memory leak, overflow?
  • The amount of computing resources and code required by a program to perform its function.

[edit] Security

Does the software protect itself and its data against unauthorized access and use? Does it allow its operator to enforce security policies? Are appropriate security mechanisms in place? Are those security mechanisms implemented correctly? Can the software withstand attacks that must be expected in its intended environment? Is the software free of errors that would make it possible to circumvent its security mechanisms? Does the architecture limit the impact of yet unknown errors? security testing is any develop system is about finding loops and weaknesses of the system.

[edit] User's perspective

In addition to the technical qualities of software, the end user's experience also determines the quality of software. This aspect of software quality is called usability. It is hard to quantify the usability of a given software product. Some important questions to be asked are:

  • Is the user interface intuitive?
  • Is it easy to perform easy operations?
  • Is it feasible to perform difficult operations?
  • Does the software give sensible error messages?
  • Do widgets behave as expected?
  • Is the software well documented?
  • Is the user interface self-explanatory/ self-documenting?
  • Is the user interface responsive or too slow?

Also, the availability of (free or paid) support may determine the usability of the software.

[edit] See also

[edit] Bibliography

  • International Organization for Standardization. Software Engineering — Product Quality — Part 1: Quality Model. ISO, Geneva, Switzerland, 2001. ISO/IEC 9126-1:2001(E).
  • Diomidis Spinellis. Code Quality: The Open Source Perspective. Addison Wesley, Boston, MA, 2006.
  • Ho-Won Jung, Seung-Gweon Kim, and Chang-Sin Chung. Measuring software product quality: A survey of ISO/IEC 9126. IEEE Software, 21(5):10–13, September/October 2004.
  • Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley, Boston, MA, second edition, 2002.
  • Robert L. Glass. Building Quality Software. Prentice Hall, Upper Saddle River, NJ, 1992.

[edit] References

  1. ^ a b Pressman, Roger S. Software Engineering: A Practitioner's Approach. Sixth Edition, International, p 746. McGraw-Hill Education 2005.
  2. ^ Pressman, Roger S. Software Engineering: A Practitioner's Approach. Sixth Edition, International, p 388. McGraw-Hill Education 2005.
  3. ^ Crosby, P., Quality is Free, McGraw-Hill, 1979
  4. ^ McConnell, Steve. Code Complete First Ed, p. 558. Microsoft Press 1993
  5. ^ DeMarco, T., "Management Can Make Quality (If)possible," Cutter IT Summit, Boston, April 1999
  6. ^ Musa, J.D, A. Iannino, and K. Okumoto, Engineering and Managing Software with Reliability Measures, McGraw-Hill, 1987
  7. ^ Pressman, Roger S. Software Engineering: A Practitioner's Approach, Sixth Edition International, McGraw-Hill International, 2005, p 762.
Retrieved from "
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
      <noscript id="pjuwb"></noscript>
            <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
              <dd id="pjuwb"></dd>
              <abbr id="pjuwb"></abbr>
              久久精品国产一区二区三| 精品动漫3d一区二区三区免费版| aⅴ色国产欧美| 亚洲人久久久| 亚洲日本va在线观看| 亚洲精品久久久久中文字幕欢迎你 | 国产欧美日韩视频在线观看| 国产精品久久久久三级| 国产一区二区三区丝袜| 亚洲电影免费| 亚洲一区二区三区在线| 久久久综合香蕉尹人综合网| 欧美激情一区二区三区在线视频观看| 亚洲激情社区| 午夜精品久久| 久久国产天堂福利天堂| 久久久亚洲一区| 欧美国产欧美综合 | 亚洲欧美激情视频| 久久久www成人免费毛片麻豆| 欧美国产精品专区| 亚洲社区在线观看| 久久蜜桃资源一区二区老牛| 欧美日韩国产成人在线免费| 国产欧美va欧美不卡在线| 亚洲国产精品www| 亚洲专区一二三| 欧美高清视频在线观看| 亚洲一本视频| 欧美久久电影| 1000部国产精品成人观看| 午夜精品久久久久久久| 亚洲黄色av| 久久久夜精品| 国产日韩欧美| 亚洲女人天堂av| 亚洲国产欧美在线人成| 久久久国产精品一区二区三区| 国产精品久久久久永久免费观看 | 亚洲一级片在线看| 欧美精品一区二区视频 | 欧美视频一区二区| 亚洲国产视频直播| 久久午夜精品| 午夜亚洲福利| 国产老女人精品毛片久久| 日韩午夜av在线| 欧美大片第1页| 久久久久久有精品国产| 国产日韩欧美在线视频观看| 亚洲欧美国产va在线影院| 亚洲精品久久久久久下一站| 欧美成人午夜视频| 亚洲黄一区二区三区| 欧美成人高清| 欧美肥婆bbw| 亚洲乱码一区二区| 亚洲毛片在线看| 欧美午夜精品久久久久久浪潮| 亚洲深夜福利网站| 中文在线资源观看网站视频免费不卡| 欧美日韩国产大片| 亚洲男女自偷自拍| 午夜国产精品影院在线观看| 国产欧美一区视频| 久久福利精品| 久久精品夜色噜噜亚洲a∨| 美脚丝袜一区二区三区在线观看 | 久久久伊人欧美| 在线 亚洲欧美在线综合一区| 久久免费观看视频| 老司机成人网| 一本色道久久综合一区| 在线综合欧美| 国产亚洲一级高清| 欧美成人免费网站| 欧美日韩天天操| 欧美在线精品免播放器视频| 欧美在线视频免费播放| 亚洲国产日韩一区二区| 亚洲精品一区二区三区在线观看 | 伊人久久大香线蕉av超碰演员| 美脚丝袜一区二区三区在线观看| 麻豆精品在线视频| 亚洲在线观看| 久久人人超碰| 在线亚洲欧美专区二区| 香蕉免费一区二区三区在线观看| 在线日韩中文| 亚洲一区国产视频| 亚洲精品资源| 欧美在线国产| 一区二区三区视频在线观看| 午夜一级久久| 中文一区二区在线观看| 久久精品人人爽| 亚洲一区二区不卡免费| 久久精品国产清高在天天线| 一区二区三区国产在线| 久久久久九九九九| 性高湖久久久久久久久| 欧美精品久久久久久久| 久久婷婷色综合| 国产精品国产三级国产专播精品人| 另类亚洲自拍| 国产一区二区日韩精品| 一本色道久久加勒比精品| 亚洲国产美女精品久久久久∴| 亚洲一区影音先锋| av不卡在线| 免费欧美网站| 玖玖玖国产精品| 国产精品视频久久一区| 亚洲精品日本| 91久久极品少妇xxxxⅹ软件| 亚洲欧美日韩精品久久久| 一区二区三区日韩在线观看| 久久综合电影一区| 欧美在线一级视频| 欧美日韩另类一区| 最新日韩在线| 亚洲二区在线观看| 久久国产手机看片| 久久久久国产精品一区二区| 国产精品盗摄一区二区三区| 亚洲福利视频三区| 亚洲国产片色| 国产精品你懂的| 一区二区三区www| 最新69国产成人精品视频免费| 午夜精品在线看| 亚洲制服av| 欧美视频四区| 亚洲婷婷综合色高清在线| 亚洲一区二区三区免费在线观看 | 亚洲激情在线观看视频免费| 亚洲国产成人91精品| 久久国产精品久久久| 久久九九精品99国产精品| 国产欧美精品在线观看| 午夜精品三级视频福利| 久久超碰97中文字幕| 国产精品一区二区在线观看| 国产精品99久久久久久久vr| 亚洲女女女同性video| 国产精品有限公司| 先锋a资源在线看亚洲| 久久久久国产一区二区| 精品成人a区在线观看| 免费91麻豆精品国产自产在线观看| 欧美96在线丨欧| 亚洲精品久久久久久久久| 欧美激情视频一区二区三区不卡| 亚洲欧洲精品一区二区| 中文久久精品| 国产一区二区三区日韩| 毛片一区二区三区| 99xxxx成人网| 久久精品国产久精国产思思| 在线播放日韩| 欧美日韩免费精品| 性欧美办公室18xxxxhd| 欧美黄色一区| 亚洲无线视频| 国模私拍视频一区| 欧美精品精品一区| 欧美永久精品| 亚洲精品午夜精品| 欧美一区二区三区电影在线观看| 极品av少妇一区二区| 欧美激情免费观看| 欧美一区二区久久久| 亚洲国产一区二区三区a毛片| 亚洲一区观看| 亚洲国产日韩欧美在线图片| 国产精品乱码一区二区三区| 久久久久综合网| 一本色道久久综合亚洲精品婷婷 | 另类亚洲自拍| 亚洲欧美国内爽妇网| 亚洲激情视频在线| 国产欧美高清| 欧美午夜在线| 久久视频一区二区| 亚洲一区二区三区免费视频| 欧美电影免费观看网站| 欧美在线999| 99精品99久久久久久宅男| 国产自产精品| 欧美四级在线观看| 欧美激情第9页| 久久午夜羞羞影院免费观看| 亚洲免费视频在线观看| 亚洲三级视频| 免费看亚洲片| 欧美午夜精品久久久| 欧美视频福利| 午夜视频在线观看一区二区三区| 亚洲精品偷拍| 亚洲激情国产|