• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            pku1309 數學優化+枚舉

            題目
            Coconuts, Revisited
            Time Limit: 1000MS
            Memory Limit: 10000K
            Total Submissions: 1832
            Accepted: 737

            Description

            The short story titled Coconuts, by Ben Ames Williams, appeared in the Saturday Evening Post on October 9, 1926. The story tells about five men and a monkey who were shipwrecked on an island. They spent the first night gathering coconuts. During the night, one man woke up and decided to take his share of the coconuts. He divided them into five piles. One coconut was left over so he gave it to the monkey, then hid his share and went back to sheep.

            Soon a second man woke up and did the same thing. After dividing the coconuts into five piles, one coconut was left over which he gave to the monkey. He then hid his share and went back to bed. The third, fourth, and fifth man followed exactly the same procedure. The next morning, after they all woke up, they divided the remaining coconuts into five equal shares. This time no coconuts were left over.

            An obvious question is "how many coconuts did they originally gather?" There are an infinite number of answers, but the lowest of these is 3,121. But that's not our problem here.

            Suppose we turn the problem around. If we know the number of coconuts that were gathered, what is the maximum number of persons (and one monkey) that could have been shipwrecked if the same procedure could occur?

            Input

            The input will consist of a sequence of integers, each representing the number of coconuts gathered by a group of persons (and a monkey) that were shipwrecked. The sequence will be followed by a negative number.

            Output

            For each number of coconuts, determine the largest number of persons who could have participated in the procedure described above. Display the results similar to the manner shown below, in the Expected Output. There may be no solution for some of the input cases; if so, state that observation.

            Sample Input

            25 30 3121 -1

            Sample Output

            25 coconuts, 3 people and 1 monkey 30 coconuts, no solution 3121 coconuts, 5 people and 1 monkey

            Source


            解法:
            首先寫出遞推公式
            f(0)=A  A=nk
            f(i)=f(i-1)/(n-1)*n+1

            隨便什么方法寫出閉形式
            f(n)=[(n^n)*(A+n-1)]/[(n-1)^n]-(n-1)
            題目中告訴f(n)的值,求n最大值
            首先觀察下前面那個分式,由于n和n-1互質,所以n^n和(n-1)^n也互質,分式結果要為一個整數,f(n)+n-1中必須含有因子n^n;換句話說,f(n)+n-1>n^n,題目中給的f(n)可以用32位整數表示,那么n必然小于12!
            下面不用說什么了,暴力吧,肯定0MS了~不過為了完美,n^n我用了二進制快速冪~具體看代碼吧

            代碼:
             1 Source Code
             2 Problem: 1309        User: yzhw
             3 Memory: 392K        Time: 0MS
             4 Language: G++        Result: Accepted
             5 
             6     Source Code
             7 
             8     # include <cstdio>
             9     using namespace std;
            10     long long pow(int a,int b)
            11     {
            12         long long ans=1,t=a;
            13         while(b)
            14         {
            15             if(b&1) ans*=t;
            16             t*=t;
            17             b>>=1;
            18         }
            19         return ans;
            20     }
            21     int main()
            22     {
            23         //freopen("input.txt","r",stdin);
            24         int n;
            25         while(scanf("%d",&n)!=EOF&&n>=0)
            26         {
            27             int ans=-1,i;
            28             for(i=2;i<=12;i++)
            29             {
            30                 long long t=n;
            31                 t+=i-1;
            32                 long long t1=pow(i,i),t2=pow(i-1,i);
            33                 if(t%t1==0)
            34                 {
            35                     t=t/t1*t2-i+1;
            36                     if(t>=0&&t%i==0) ans=i;
            37                 }
            38             }
            39             if(ans==-1) printf("%d coconuts, no solution\n",n);
            40             else printf("%d coconuts, %d people and 1 monkey\n",n,ans);
            41         }
            42         return 0;
            43     }
            44 
            45 

            posted on 2011-07-19 00:10 yzhw 閱讀(246) 評論(0)  編輯 收藏 引用 所屬分類: numberic

            <2011年9月>
            28293031123
            45678910
            11121314151617
            18192021222324
            2526272829301
            2345678

            導航

            統計

            公告

            統計系統

            留言簿(1)

            隨筆分類(227)

            文章分類(2)

            OJ

            最新隨筆

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            综合网日日天干夜夜久久| 久久久久女教师免费一区| 国内精品久久人妻互换| 成人国内精品久久久久影院| 青草影院天堂男人久久| 亚洲&#228;v永久无码精品天堂久久 | 狠狠色狠狠色综合久久| 91久久精一区二区三区大全| 久久久受www免费人成| 成人久久久观看免费毛片| 久久国产精品无| 麻豆精品久久精品色综合| 狠狠色综合网站久久久久久久高清| 品成人欧美大片久久国产欧美... 品成人欧美大片久久国产欧美 | 一97日本道伊人久久综合影院| 国产成年无码久久久久毛片| 久久亚洲国产精品123区| 国内精品久久久久影院一蜜桃 | 久久这里只精品国产99热| 久久人人爽人人爽人人片AV麻烦| 久久精品国产精品青草app| 无码国内精品久久人妻| 伊人久久综合无码成人网| 色老头网站久久网| 久久毛片一区二区| 久久这里都是精品| 久久国产欧美日韩精品免费| 热久久视久久精品18| 亚洲欧美国产精品专区久久 | 久久人人爽人人爽人人爽| 午夜视频久久久久一区| 国产欧美久久久精品影院| 久久久午夜精品福利内容| 三级三级久久三级久久| 久久天天躁狠狠躁夜夜avapp| 囯产精品久久久久久久久蜜桃| 伊人热热久久原色播放www| 久久精品国产男包| 国内精品九九久久精品| 久久久噜噜噜久久中文福利| 精品999久久久久久中文字幕|