• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The 2010 ACM-ICPC Asia Chengdu Regional Contest Error Curves 三分法求凸函數極值

            Error Curves

            Time Limit: 2 Seconds      Memory Limit: 65536 KB

            Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a method called Linear Discriminant Analysis, which has many interesting properties.

            In order to test the algorithm's efficiency, she collects many datasets. What's more, each data is divided into two parts: training data and test data. She gets the parameters of the model on training data and test the model on test data.

            To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.

            Quadric Function

            It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimal which related to multiple quadric functions.

            The new function F(x) is defined as follow:

            F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function.

            Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?

            Input

            The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n(n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.

            Output

            For each test case, output the answer in a line. Round to 4 digits after the decimal point.

            Sample Input

            2
            1
            2 0 0
            2
            2 0 0
            2 -4 2
            

            Sample Output

            0.0000
            0.5000
            
            簡明題意:求一堆開口向上的二次函數在[0,1000]范圍上函數值最大值的最小值。
            二次函數的子集仍然為凸函數,所以可以用三分法求極值。精度實在很蛋疼,這題要求值域精確到1e-4,但是定義域沒說精確到多少,結果死wa,卡到1e-10終于過了。。
            貼代碼
             1# include <cstdio>
             2# include <cmath>
             3using namespace std;
             4int n;
             5int data[10001][3];
             6# define max(a,b) ((a)>(b)?(a):(b))
             7double cal(double mid)
             8{
             9   double res=-1e26;
            10   for(int i=0;i<n;i++)
            11     res=max(res,data[i][0]*mid*mid+data[i][1]*mid+data[i][2]);
            12   return res;
            13}

            14int main()
            15{
            16    int test;
            17    scanf("%d",&test);
            18    while(test--)
            19    {
            20       scanf("%d",&n);
            21       for(int i=0;i<n;i++)
            22         scanf("%d%d%d",&data[i][0],&data[i][1],&data[i][2]);
            23       double s=0.0,e=1000.0;
            24       double last=s;
            25       while(fabs(e-s)>1e-10)
            26       {
            27       
            28         double m1=(s+e)/2.0,m2=(m1+e)/2.0;
            29         if(cal(m1)<cal(m2))
            30           e=m2;
            31         else 
            32           s=m1;
            33       }

            34       printf("%.4lf\n",cal(e));
            35    }

            36    return 0;
            37}

            38
            39

            posted on 2010-11-16 00:50 yzhw 閱讀(800) 評論(0)  編輯 收藏 引用 所屬分類: numberic

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            公告

            統計系統

            留言簿(1)

            隨筆分類(227)

            文章分類(2)

            OJ

            最新隨筆

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            久久青青国产| 国产精品美女久久久久av爽| 国产成人久久精品激情| 久久久综合香蕉尹人综合网| 国产亚洲精品自在久久| 国产美女久久久| 国产精品久久久久影视不卡| 亚洲αv久久久噜噜噜噜噜| 亚洲国产精品无码久久一线| 久久人妻少妇嫩草AV无码专区 | 伊人色综合久久天天人守人婷| 亚洲а∨天堂久久精品9966| 久久久国产乱子伦精品作者| 国产精品久久久久天天影视| 99久久精品免费国产大片| 99蜜桃臀久久久欧美精品网站 | 伊人久久国产免费观看视频| 久久久久亚洲av无码专区| 国产精品成人精品久久久| 久久香综合精品久久伊人| 国产L精品国产亚洲区久久| 免费精品国产日韩热久久| 日本福利片国产午夜久久| 国产精品无码久久久久久| 久久综合成人网| 久久免费精品视频| 久久久久久国产精品美女| 久久久久99精品成人片牛牛影视| 久久夜色精品国产亚洲| 亚洲精品美女久久久久99| 久久免费国产精品| 久久久久夜夜夜精品国产| 亚洲国产精品久久电影欧美| 久久九九免费高清视频| 久久99国产精品久久99| 久久久无码一区二区三区| 久久久久久精品久久久久| 久久婷婷色香五月综合激情| 久久综合久久性久99毛片| 久久精品女人天堂AV麻| 久久精品中文字幕一区|