青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

S.l.e!ep.¢%

像打了激速一樣,以四倍的速度運轉,開心的工作
簡單、開放、平等的公司文化;尊重個性、自由與個人價值;
posts - 1098, comments - 335, trackbacks - 0, articles - 1
  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

C++:Type Casting

Posted on 2010-10-08 14:08 S.l.e!ep.¢% 閱讀(810) 評論(0)  編輯 收藏 引用 所屬分類: C++
Converting an expression of a given type into another type is known as ? type-casting . We have already seen some ways to type cast:

Implicit conversion

Implicit conversions do not require any operator. They are automatically performed when a value is copied to a compatible type. For example:

														
																short
														 a=2000;
int b;
b=a;

Here, the value of?a?has been promoted from?short?to?int?and we have not had to specify any type-casting operator. This is known as a standard conversion. Standard conversions affect fundamental data types, and allow conversions such as the conversions between numerical types (short?to?int,?int?to?float,?double?to?int...), to or from?bool, and some pointer conversions. Some of these conversions may imply a loss of precision, which the compiler can signal with a warning. This can be avoided with an explicit conversion.

Implicit conversions also include constructor or operator conversions, which affect classes that include specific constructors or operator functions to perform conversions. For example:

														
																class
														 A {};
class B { public: B (A a) {} };

A a;
B b=a;

Here, a implicit conversion happened between objects of?class A?and?class B, because?B?has a constructor that takes an object of class?A?as parameter. Therefore implicit conversions from?A?to?B?are allowed.

Explicit conversion

C++ is a strong-typed language. Many conversions, specially those that imply a different interpretation of the value, require an explicit conversion. We have already seen two notations for explicit type conversion: functional and c-like casting:

														
																short
														 a=2000;
int b;
b = (int) a;    // c-like cast notation
b = int (a);    // functional notation

The functionality of these explicit conversion operators is enough for most needs with fundamental data types. However, these operators can be applied indiscriminately on classes and pointers to classes, which can lead to code that while being syntactically correct can cause runtime errors. For example, the following code is syntactically correct:

														
																// class type-casting
														
														
																#include <iostream>
														
														
																using
														
														
																namespace
														 std;

class CDummy {
    float i,j;
};

class CAddition {
	int x,y;
  public:
	CAddition (int a, int b) { x=a; y=b; }
	int result() { return x+y;}
};

int main () {
  CDummy d;
  CAddition * padd;
  padd = (CAddition*) &d;
  cout << padd->result();
  return 0;
}
												

The program declares a pointer to?CAddition, but then it assigns to it a reference to an object of another incompatible type using explicit type-casting:

padd = (CAddition*) &d;

Traditional explicit type-casting allows to convert any pointer into any other pointer type, independently of the types they point to. The subsequent call to member?result?will produce either a run-time error or a unexpected result.

In order to control these types of conversions between classes, we have four specific casting operators:?dynamic_cast,?reinterpret_cast,?static_cast?and?const_cast. Their format is to follow the new type enclosed between angle-brackets (<>) and immediately after, the expression to be converted between parentheses.

dynamic_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const_cast <new_type> (expression)

The traditional type-casting equivalents to these expressions would be:

(new_type) expression
new_type (expression)

but each one with its own special characteristics:

dynamic_cast: 轉換子類的指針(或引用)為父類的指針(或引用)

dynamic_cast?can be used only with pointers and references to objects. Its purpose is to ensure that the result of the type conversion is a valid complete object of the requested class.

Therefore,?dynamic_cast?is always successful when we cast a class to one of its base classes:

														
																class
														 CBase { };
class CDerived: public CBase { };

CBase b; CBase* pb;
CDerived d; CDerived* pd;

pb = dynamic_cast<CBase*>(&d);     // ok: derived-to-base
pd = dynamic_cast<CDerived*>(&b);  // wrong: base-to-derived

The second conversion in this piece of code would produce a compilation error since base-to-derived conversions are not allowed with?dynamic_cast?unless the base class is polymorphic.

When a class is polymorphic,?dynamic_cast?performs a special checking during runtime to ensure that the expression yields a valid complete object of the requested class:

														
																// dynamic_cast
														
														
																#include <iostream>
														
														
																#include <exception>
														
														
																using
														
														
																namespace
														 std;

class CBase { virtualvoid dummy() {} };
class CDerived: public CBase { int a; };

int main () {
  try {
    CBase * pba = new CDerived;
    CBase * pbb = new CBase;
    CDerived * pd;

    pd = dynamic_cast<CDerived*>(pba);
    if (pd==0) cout << "Null pointer on first type-cast" << endl;

    pd = dynamic_cast<CDerived*>(pbb);
    if (pd==0) cout << "Null pointer on second type-cast" << endl;

  } catch (exception& e) {cout << "Exception: " << e.what();}
  return 0;
}
Null pointer on second type-cast

Compatibility note:?dynamic_cast?requires the Run-Time Type Information (RTTI) to keep track of dynamic types. Some compilers support this feature as an option which is disabled by default. This must be enabled for runtime type checking using?dynamic_cast?to work properly.

The code tries to perform two dynamic casts from pointer objects of type?CBase*?(pba?and?pbb) to a pointer object of type?CDerived*, but only the first one is successful. Notice their respective initializations:

CBase * pba = new CDerived;
CBase * pbb = new CBase;

Even though both are pointers of type?CBase*,?pba?points to an object of type?CDerived, while?pbb?points to an object of type?CBase. Thus, when their respective type-castings are performed using?dynamic_cast,?pba?is pointing to a full object of class?CDerived, whereas?pbb?is pointing to an object of class?CBase, which is an incomplete object of class?CDerived.

When?dynamic_cast?cannot cast a pointer because it is not a complete object of the required class -as in the second conversion in the previous example- it returns a null pointer to indicate the failure. If?dynamic_cast?is used to convert to a reference type and the conversion is not possible, an exception of type?bad_cast?is thrown instead.

dynamic_cast?can also cast null pointers even between pointers to unrelated classes, and can also cast pointers of any type to void pointers (void*).

static_cast: 指針的轉換: 1. 子類和父類之間指針互相轉換(不進行安全檢查). 非指針的轉換: 2. 標準隱式轉換(如int->float, double->int). 3. 用戶定義轉換(構造函數轉換,轉換函數)

static_cast ? can perform conversions between pointers to related classes, not only from the derived class to its base, but also from a base class to its derived. This ensures that at least the classes are compatible if the proper object is converted, but no safety check is performed during runtime to check if the object being converted is in fact a full object of the destination type. Therefore, it is up to the programmer to ensure that the conversion is safe. On the other side, the overhead of the type-safety checks of ? dynamic_cast ? is avoided.

														
																class
														 CBase {};
class CDerived: public CBase {};
CBase * a = new CBase;
CDerived * b = static_cast<CDerived*>(a);

This would be valid, although?b?would point to an incomplete object of the class and could lead to runtime errors if dereferenced.

static_cast?can also be used to perform any other non-pointer conversion that could also be performed implicitly, like for example standard conversion between fundamental types:

														
																double
														 d=3.14159265;
int i = static_cast<int>(d); 

Or any conversion between classes with explicit constructors or operator functions as described in "implicit conversions" above.

reinterpret_cast: 1. 任何指針之間的相互轉換,即使這些類型之間沒有任何關系. 2. 指針和整數類型的相互轉換(指針->int時在Mac上會報錯: loses precision).

reinterpret_cast ? converts any pointer type to any other pointer type, even of unrelated classes. The operation result is a simple binary copy of the value from one pointer to the other. All pointer conversions are allowed: neither the content pointed nor the pointer type itself is checked.

It can also cast pointers to or from integer types. The format in which this integer value represents a pointer is platform-specific. The only guarantee is that a pointer cast to an integer type large enough to fully contain it, is granted to be able to be cast back to a valid pointer.

The conversions that can be performed by?reinterpret_cast?but not by?static_cast?have no specific uses in C++ are low-level operations, whose interpretation results in code which is generally system-specific, and thus non-portable. For example:

														
																class
														 A {};
class B {};
A * a = new A;
B * b = reinterpret_cast<B*>(a);

This is valid C++ code, although it does not make much sense, since now we have a pointer that points to an object of an incompatible class, and thus dereferencing it is unsafe.

const_cast: 轉換對象(primitive類型的不可以: int, float, double...),指針,引用的const屬性,有則去掉,沒有則加上

This type of casting manipulates the constness of an object, either to be set or to be removed. For example, in order to pass a const argument to a function that expects a non-constant parameter:

														
																// const_cast
														
														
																#include <iostream>
														
														
																using
														
														
																namespace
														 std;

void print (char * str)
{
  cout << str << endl;
}

int main () {
  constchar * c = "sample text";
  print ( const_cast<char *> (c) );
  return 0;
}
sample text

typeid

typeid ? allows to check the type of an expression:

typeid (expression)

This operator returns a reference to a constant object of type?type_info?that is defined in the standard header file?<typeinfo>. This returned value can be compared with another one using operators?==?and?!=?or can serve to obtain a null-terminated character sequence representing the data type or class name by using its?name()?member.

														
																// typeid
														
														
																#include <iostream>
														
														
																#include <typeinfo>
														
														
																using
														
														
																namespace
														 std;

int main () {
  int * a,b;
  a=0; b=0;
  if (typeid(a) != typeid(b))
  {
    cout << "a and b are of different types:\n";
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
  }
  return 0;
}
a and b are of different types:
a is: int *
b is: int  

When?typeid?is applied to classes?typeid?uses the RTTI to keep track of the type of dynamic objects. When typeid is applied to an expression whose type is a polymorphic class, the result is the type of the most derived complete object:

														
																// typeid, polymorphic class
														
														
																#include <iostream>
														
														
																#include <typeinfo>
														
														
																#include <exception>
														
														
																using
														
														
																namespace
														 std;

class CBase { virtualvoid f(){} };
class CDerived : public CBase {};

int main () {
  try {
    CBase* a = new CBase;
    CBase* b = new CDerived;
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
    cout << "*a is: " << typeid(*a).name() << '\n';
    cout << "*b is: " << typeid(*b).name() << '\n';
  } catch (exception& e) { cout << "Exception: " << e.what() << endl; }
  return 0;
}
a is: class CBase *
b is: class CBase *
*a is: class CBase
*b is: class CDerived

Notice how the type that?typeid?considers for pointers is the pointer type itself (both?a?and?b?are of type?class CBase *). However, when?typeid?is applied to objects (like?*a?and?*b)?typeid?yields their dynamic type (i.e. the type of their most derived complete object: 真實的類型,即使子類對象使用的是父類的指針,但返回的子類的信息).

If the type?typeid?evaluates is a pointer preceded by the dereference operator (*), and this pointer has a null value,?typeid?throws a?bad_typeid?exception.

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲精品久久久久久下一站| 亚洲电影免费| 欧美三级资源在线| 久久麻豆一区二区| 欧美在线3区| 久久伊人精品天天| 欧美国产在线视频| 欧美日韩hd| 久久久久久久久久久成人| 欧美一级理论片| 久久国内精品视频| 麻豆精品视频在线观看| 欧美国产极速在线| 日韩一级视频免费观看在线| 中文精品视频一区二区在线观看| 一片黄亚洲嫩模| 欧美在线视频一区二区| 久久综合中文色婷婷| 欧美久久一区| 国产精品欧美风情| 国内外成人在线| 在线国产日韩| 亚洲一区二区三区国产| 久久久久久久久久久久久女国产乱 | 亚洲一区在线播放| 久久精品国产v日韩v亚洲 | 久久久久久久久久久久久女国产乱| 久久久天天操| 亚洲美女区一区| 久久久精品一区二区三区| 欧美精品午夜| 精久久久久久久久久久| 国产精品99久久久久久久女警| 欧美在线精品一区| 亚洲精品欧洲| 久久男人资源视频| 国产精品乱码人人做人人爱| 亚洲第一视频网站| 性欧美精品高清| 亚洲精品乱码久久久久久蜜桃91| 亚洲欧美视频在线观看视频| 欧美日本韩国一区| 亚洲国产精品小视频| 欧美一区在线看| 99视频热这里只有精品免费| 久久精品亚洲精品国产欧美kt∨| 欧美日韩精品一区二区天天拍小说 | 欧美一区中文字幕| 亚洲理伦电影| 欧美成人精品影院| 在线高清一区| 久久一区二区三区四区| 亚洲一区视频在线| 欧美四级剧情无删版影片| 亚洲日本va午夜在线电影| 久久久久久噜噜噜久久久精品| 一区二区三区三区在线| 欧美激情综合亚洲一二区 | 久久精精品视频| 国产精品永久免费| 亚洲欧美成人综合| 夜色激情一区二区| 欧美日韩天堂| 一区二区三区黄色| 亚洲九九爱视频| 欧美裸体一区二区三区| 亚洲欧洲精品成人久久奇米网| 乱人伦精品视频在线观看| 欧美在线观看视频在线| 好吊视频一区二区三区四区| 久久精品国产久精国产思思| 亚洲欧美日韩区| 韩国欧美一区| 免费久久久一本精品久久区| 久久在线免费观看视频| 亚洲精品美女在线观看| 亚洲黄色影院| 欧美色大人视频| 欧美一区三区二区在线观看| 欧美一区免费| 亚洲欧洲偷拍精品| av成人动漫| 国产精品五月天| 久久久之久亚州精品露出| 六月天综合网| 亚洲免费一在线| 性色av香蕉一区二区| 尤物九九久久国产精品的分类| 免费视频久久| 国产精品扒开腿做爽爽爽视频| 欧美一区二区高清在线观看| 久久精品最新地址| 亚洲老板91色精品久久| av成人激情| 激情一区二区三区| 亚洲精品欧美激情| 国内精品伊人久久久久av一坑| 亚洲第一页在线| 国产精品久久久久毛片大屁完整版| 欧美在线看片| 欧美日韩1234| 毛片一区二区| 国产精品久久午夜| 免费看精品久久片| 国产精品美女久久久久av超清 | 欧美18av| 国产女人aaa级久久久级| 欧美激情四色| 国内精品久久久久影院优| 亚洲激情av| 国产一区二区| 一区二区三区国产在线观看| 在线激情影院一区| 亚洲综合视频一区| 99国产一区| 免费日韩一区二区| 国产精品v欧美精品v日韩精品| 久久久欧美精品sm网站| 欧美图区在线视频| 亚洲国产精品久久久久婷婷884| 国产乱码精品| 一区二区三区免费网站| 亚洲欧洲视频| 久久综合久久综合九色| 久久精品免费播放| 国产欧美另类| 在线视频你懂得一区二区三区| 最新亚洲激情| 欧美成人精品1314www| 欧美电影免费观看高清完整版| 国产欧美一区二区三区在线看蜜臀 | 亚洲成人资源| 好看的日韩视频| 性做久久久久久久久| 亚洲欧美国产日韩天堂区| 欧美日韩精品一本二本三本| 欧美成人精品在线视频| 樱桃视频在线观看一区| 久久精品国产清高在天天线| 欧美在线播放| 国产一区二区三区久久久久久久久| 中文国产成人精品久久一| 亚洲欧美日韩一区二区三区在线| 欧美日韩在线播| 亚洲午夜精品| 欧美一区影院| 影音先锋亚洲一区| 免费久久久一本精品久久区| 欧美成人资源| 99精品欧美一区二区蜜桃免费| 欧美激情一区二区| 9久re热视频在线精品| 亚洲欧美精品中文字幕在线| 国产精品久久久久av| 亚洲欧美日韩精品久久奇米色影视 | 欧美激情bt| 夜夜嗨av一区二区三区网站四季av| 欧美成人乱码一区二区三区| 亚洲国产精品成人久久综合一区| 日韩视频在线观看免费| 欧美性jizz18性欧美| 亚洲综合日韩| 亚洲高清不卡av| 亚洲天堂av电影| 国产午夜久久久久| 久久久免费精品视频| 欧美成人午夜激情| 一区电影在线观看| 国产麻豆9l精品三级站| 久久免费黄色| 一区二区三区欧美| 免费成人高清| 亚洲欧美国产制服动漫| 一区二区三区在线免费观看| 欧美激情导航| 欧美一区二区三区另类| 亚洲国产欧美日韩| 欧美在线播放一区| 亚洲国产一区二区三区a毛片| 欧美日韩日日骚| 久久精品国产69国产精品亚洲| 在线成人欧美| 国产精品久久久久久久久久ktv | 香蕉久久夜色精品国产| 亚洲动漫精品| 国产精品入口日韩视频大尺度| 久久久精品欧美丰满| 在线一区免费观看| 欧美大片在线观看| 欧美综合国产精品久久丁香| 亚洲破处大片| 国产综合第一页| 国产精品高潮视频| 欧美福利专区| 久久裸体艺术| 欧美在线亚洲在线| 亚洲综合色噜噜狠狠| 夜夜精品视频一区二区| 欧美成人资源网| 快she精品国产999|