青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

S.l.e!ep.¢%

像打了激速一樣,以四倍的速度運轉,開心的工作
簡單、開放、平等的公司文化;尊重個性、自由與個人價值;
posts - 1098, comments - 335, trackbacks - 0, articles - 1
  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

C++:Type Casting

Posted on 2010-10-08 14:08 S.l.e!ep.¢% 閱讀(810) 評論(0)  編輯 收藏 引用 所屬分類: C++
Converting an expression of a given type into another type is known as ? type-casting . We have already seen some ways to type cast:

Implicit conversion

Implicit conversions do not require any operator. They are automatically performed when a value is copied to a compatible type. For example:

														
																short
														 a=2000;
int b;
b=a;

Here, the value of?a?has been promoted from?short?to?int?and we have not had to specify any type-casting operator. This is known as a standard conversion. Standard conversions affect fundamental data types, and allow conversions such as the conversions between numerical types (short?to?int,?int?to?float,?double?to?int...), to or from?bool, and some pointer conversions. Some of these conversions may imply a loss of precision, which the compiler can signal with a warning. This can be avoided with an explicit conversion.

Implicit conversions also include constructor or operator conversions, which affect classes that include specific constructors or operator functions to perform conversions. For example:

														
																class
														 A {};
class B { public: B (A a) {} };

A a;
B b=a;

Here, a implicit conversion happened between objects of?class A?and?class B, because?B?has a constructor that takes an object of class?A?as parameter. Therefore implicit conversions from?A?to?B?are allowed.

Explicit conversion

C++ is a strong-typed language. Many conversions, specially those that imply a different interpretation of the value, require an explicit conversion. We have already seen two notations for explicit type conversion: functional and c-like casting:

														
																short
														 a=2000;
int b;
b = (int) a;    // c-like cast notation
b = int (a);    // functional notation

The functionality of these explicit conversion operators is enough for most needs with fundamental data types. However, these operators can be applied indiscriminately on classes and pointers to classes, which can lead to code that while being syntactically correct can cause runtime errors. For example, the following code is syntactically correct:

														
																// class type-casting
														
														
																#include <iostream>
														
														
																using
														
														
																namespace
														 std;

class CDummy {
    float i,j;
};

class CAddition {
	int x,y;
  public:
	CAddition (int a, int b) { x=a; y=b; }
	int result() { return x+y;}
};

int main () {
  CDummy d;
  CAddition * padd;
  padd = (CAddition*) &d;
  cout << padd->result();
  return 0;
}
												

The program declares a pointer to?CAddition, but then it assigns to it a reference to an object of another incompatible type using explicit type-casting:

padd = (CAddition*) &d;

Traditional explicit type-casting allows to convert any pointer into any other pointer type, independently of the types they point to. The subsequent call to member?result?will produce either a run-time error or a unexpected result.

In order to control these types of conversions between classes, we have four specific casting operators:?dynamic_cast,?reinterpret_cast,?static_cast?and?const_cast. Their format is to follow the new type enclosed between angle-brackets (<>) and immediately after, the expression to be converted between parentheses.

dynamic_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const_cast <new_type> (expression)

The traditional type-casting equivalents to these expressions would be:

(new_type) expression
new_type (expression)

but each one with its own special characteristics:

dynamic_cast: 轉換子類的指針(或引用)為父類的指針(或引用)

dynamic_cast?can be used only with pointers and references to objects. Its purpose is to ensure that the result of the type conversion is a valid complete object of the requested class.

Therefore,?dynamic_cast?is always successful when we cast a class to one of its base classes:

														
																class
														 CBase { };
class CDerived: public CBase { };

CBase b; CBase* pb;
CDerived d; CDerived* pd;

pb = dynamic_cast<CBase*>(&d);     // ok: derived-to-base
pd = dynamic_cast<CDerived*>(&b);  // wrong: base-to-derived

The second conversion in this piece of code would produce a compilation error since base-to-derived conversions are not allowed with?dynamic_cast?unless the base class is polymorphic.

When a class is polymorphic,?dynamic_cast?performs a special checking during runtime to ensure that the expression yields a valid complete object of the requested class:

														
																// dynamic_cast
														
														
																#include <iostream>
														
														
																#include <exception>
														
														
																using
														
														
																namespace
														 std;

class CBase { virtualvoid dummy() {} };
class CDerived: public CBase { int a; };

int main () {
  try {
    CBase * pba = new CDerived;
    CBase * pbb = new CBase;
    CDerived * pd;

    pd = dynamic_cast<CDerived*>(pba);
    if (pd==0) cout << "Null pointer on first type-cast" << endl;

    pd = dynamic_cast<CDerived*>(pbb);
    if (pd==0) cout << "Null pointer on second type-cast" << endl;

  } catch (exception& e) {cout << "Exception: " << e.what();}
  return 0;
}
Null pointer on second type-cast

Compatibility note:?dynamic_cast?requires the Run-Time Type Information (RTTI) to keep track of dynamic types. Some compilers support this feature as an option which is disabled by default. This must be enabled for runtime type checking using?dynamic_cast?to work properly.

The code tries to perform two dynamic casts from pointer objects of type?CBase*?(pba?and?pbb) to a pointer object of type?CDerived*, but only the first one is successful. Notice their respective initializations:

CBase * pba = new CDerived;
CBase * pbb = new CBase;

Even though both are pointers of type?CBase*,?pba?points to an object of type?CDerived, while?pbb?points to an object of type?CBase. Thus, when their respective type-castings are performed using?dynamic_cast,?pba?is pointing to a full object of class?CDerived, whereas?pbb?is pointing to an object of class?CBase, which is an incomplete object of class?CDerived.

When?dynamic_cast?cannot cast a pointer because it is not a complete object of the required class -as in the second conversion in the previous example- it returns a null pointer to indicate the failure. If?dynamic_cast?is used to convert to a reference type and the conversion is not possible, an exception of type?bad_cast?is thrown instead.

dynamic_cast?can also cast null pointers even between pointers to unrelated classes, and can also cast pointers of any type to void pointers (void*).

static_cast: 指針的轉換: 1. 子類和父類之間指針互相轉換(不進行安全檢查). 非指針的轉換: 2. 標準隱式轉換(如int->float, double->int). 3. 用戶定義轉換(構造函數轉換,轉換函數)

static_cast ? can perform conversions between pointers to related classes, not only from the derived class to its base, but also from a base class to its derived. This ensures that at least the classes are compatible if the proper object is converted, but no safety check is performed during runtime to check if the object being converted is in fact a full object of the destination type. Therefore, it is up to the programmer to ensure that the conversion is safe. On the other side, the overhead of the type-safety checks of ? dynamic_cast ? is avoided.

														
																class
														 CBase {};
class CDerived: public CBase {};
CBase * a = new CBase;
CDerived * b = static_cast<CDerived*>(a);

This would be valid, although?b?would point to an incomplete object of the class and could lead to runtime errors if dereferenced.

static_cast?can also be used to perform any other non-pointer conversion that could also be performed implicitly, like for example standard conversion between fundamental types:

														
																double
														 d=3.14159265;
int i = static_cast<int>(d); 

Or any conversion between classes with explicit constructors or operator functions as described in "implicit conversions" above.

reinterpret_cast: 1. 任何指針之間的相互轉換,即使這些類型之間沒有任何關系. 2. 指針和整數類型的相互轉換(指針->int時在Mac上會報錯: loses precision).

reinterpret_cast ? converts any pointer type to any other pointer type, even of unrelated classes. The operation result is a simple binary copy of the value from one pointer to the other. All pointer conversions are allowed: neither the content pointed nor the pointer type itself is checked.

It can also cast pointers to or from integer types. The format in which this integer value represents a pointer is platform-specific. The only guarantee is that a pointer cast to an integer type large enough to fully contain it, is granted to be able to be cast back to a valid pointer.

The conversions that can be performed by?reinterpret_cast?but not by?static_cast?have no specific uses in C++ are low-level operations, whose interpretation results in code which is generally system-specific, and thus non-portable. For example:

														
																class
														 A {};
class B {};
A * a = new A;
B * b = reinterpret_cast<B*>(a);

This is valid C++ code, although it does not make much sense, since now we have a pointer that points to an object of an incompatible class, and thus dereferencing it is unsafe.

const_cast: 轉換對象(primitive類型的不可以: int, float, double...),指針,引用的const屬性,有則去掉,沒有則加上

This type of casting manipulates the constness of an object, either to be set or to be removed. For example, in order to pass a const argument to a function that expects a non-constant parameter:

														
																// const_cast
														
														
																#include <iostream>
														
														
																using
														
														
																namespace
														 std;

void print (char * str)
{
  cout << str << endl;
}

int main () {
  constchar * c = "sample text";
  print ( const_cast<char *> (c) );
  return 0;
}
sample text

typeid

typeid ? allows to check the type of an expression:

typeid (expression)

This operator returns a reference to a constant object of type?type_info?that is defined in the standard header file?<typeinfo>. This returned value can be compared with another one using operators?==?and?!=?or can serve to obtain a null-terminated character sequence representing the data type or class name by using its?name()?member.

														
																// typeid
														
														
																#include <iostream>
														
														
																#include <typeinfo>
														
														
																using
														
														
																namespace
														 std;

int main () {
  int * a,b;
  a=0; b=0;
  if (typeid(a) != typeid(b))
  {
    cout << "a and b are of different types:\n";
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
  }
  return 0;
}
a and b are of different types:
a is: int *
b is: int  

When?typeid?is applied to classes?typeid?uses the RTTI to keep track of the type of dynamic objects. When typeid is applied to an expression whose type is a polymorphic class, the result is the type of the most derived complete object:

														
																// typeid, polymorphic class
														
														
																#include <iostream>
														
														
																#include <typeinfo>
														
														
																#include <exception>
														
														
																using
														
														
																namespace
														 std;

class CBase { virtualvoid f(){} };
class CDerived : public CBase {};

int main () {
  try {
    CBase* a = new CBase;
    CBase* b = new CDerived;
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
    cout << "*a is: " << typeid(*a).name() << '\n';
    cout << "*b is: " << typeid(*b).name() << '\n';
  } catch (exception& e) { cout << "Exception: " << e.what() << endl; }
  return 0;
}
a is: class CBase *
b is: class CBase *
*a is: class CBase
*b is: class CDerived

Notice how the type that?typeid?considers for pointers is the pointer type itself (both?a?and?b?are of type?class CBase *). However, when?typeid?is applied to objects (like?*a?and?*b)?typeid?yields their dynamic type (i.e. the type of their most derived complete object: 真實的類型,即使子類對象使用的是父類的指針,但返回的子類的信息).

If the type?typeid?evaluates is a pointer preceded by the dereference operator (*), and this pointer has a null value,?typeid?throws a?bad_typeid?exception.

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美阿v一级看视频| 欧美一区二区三区免费观看视频| 国产日韩精品在线| 欧美精品尤物在线| 欧美日韩精选| 国产精品丝袜91| 国产中文一区二区| 91久久精品美女| 亚洲性视频网址| 久久人人爽爽爽人久久久| 老司机免费视频久久| 欧美成人资源网| 一道本一区二区| 久久午夜激情| 国产精品免费小视频| 极品av少妇一区二区| 在线视频你懂得一区| 久久成人精品无人区| 欧美激情精品久久久久久大尺度| 亚洲国产欧美国产综合一区| 亚洲高清不卡av| 久久激情综合| 国产精品日韩精品欧美在线| 在线观看成人一级片| 欧美一区二区视频在线| 亚洲精品日韩欧美| 久久婷婷国产综合国色天香| 国产精品欧美日韩一区二区| 亚洲精品字幕| 最新69国产成人精品视频免费| 久久不射中文字幕| 国产精品久久久久一区二区三区| 亚洲人成绝费网站色www| 久久亚洲午夜电影| 欧美诱惑福利视频| 亚洲一区在线免费| 国一区二区在线观看| 久久精品欧美| 久久久久久久久蜜桃| 在线播放国产一区中文字幕剧情欧美| 午夜免费电影一区在线观看| 亚洲自拍偷拍网址| 激情亚洲一区二区三区四区| 裸体丰满少妇做受久久99精品| 欧美亚洲一区在线| 一区三区视频| 亚洲精品乱码久久久久久蜜桃麻豆 | 日韩一级片网址| 欧美日韩精品一区| 久久精品99国产精品| 久久人人爽爽爽人久久久| 亚洲日本成人在线观看| 一本色道久久加勒比88综合| 国产精品入口日韩视频大尺度| 久久久免费av| 国产精品久久久久久久久免费樱桃 | 国产亚洲成精品久久| 欧美国产1区2区| 国产日本欧美在线观看| 亚洲激情在线激情| 狠狠狠色丁香婷婷综合久久五月| 日韩午夜在线播放| 99人久久精品视频最新地址| 亚洲一区二区三区在线| 久久精品日产第一区二区| 亚洲精品一区二区三区婷婷月 | 亚洲伊人网站| 麻豆国产精品一区二区三区| 欧美在线视频一区二区三区| 欧美激情一区二区三区在线视频观看| 欧美一激情一区二区三区| 欧美精品久久99久久在免费线| 久久精品综合一区| 黄色在线成人| 免费不卡欧美自拍视频| 欧美激情第一页xxx| 亚洲人成网站影音先锋播放| 久久久综合香蕉尹人综合网| 欧美aa在线视频| 亚洲精品三级| 欧美日韩亚洲天堂| 性色av一区二区怡红| 久久精品官网| 亚洲美女免费视频| 国产精品久久久久9999| 久久国产精品亚洲77777| 噜噜噜91成人网| 夜夜夜精品看看| 激情成人亚洲| 国产精品理论片| 欧美mv日韩mv国产网站app| 亚洲免费黄色| 久久久久免费视频| 亚洲欧美日韩成人高清在线一区| 国产精品免费看片| 欧美精品成人91久久久久久久| 亚洲午夜视频| 亚洲精品国产无天堂网2021| 久久久久国色av免费观看性色| 亚洲精品字幕| 亚洲精品影视| 亚洲大胆av| 亚洲一区二区在线视频| 亚洲人成亚洲人成在线观看图片 | 日韩视频在线观看| 国产美女精品视频| 欧美日韩hd| 欧美色图五月天| 欧美激情一区二区三区| 麻豆成人综合网| 久久中文久久字幕| 久久久久久免费| 久久精品在线| 免费亚洲电影在线| 免费人成精品欧美精品| 欧美承认网站| 欧美日韩三级一区二区| 欧美视频中文一区二区三区在线观看| 欧美电影免费观看高清| 欧美伦理91i| 国产精品美女www爽爽爽视频| 欧美日韩直播| 狠狠色狠色综合曰曰| 亚洲高清二区| 亚洲专区欧美专区| 久久久精品日韩| 暖暖成人免费视频| 99精品免费网| 欧美一区二区三区免费大片| 久久精品国产在热久久 | 欧美精品乱码久久久久久按摩| 欧美国产大片| 国产一区白浆| 正在播放欧美一区| 久久激情综合网| 一本色道婷婷久久欧美| 蜜臀av性久久久久蜜臀aⅴ四虎| 欧美另类69精品久久久久9999| 国产精品亚洲美女av网站| 欧美一区2区三区4区公司二百| 欧美精品www在线观看| 激情久久久久久久| 一区二区三区精品| 亚洲高清不卡在线观看| 久久香蕉国产线看观看网| 国产精品中文字幕欧美| 亚洲视频碰碰| 日韩香蕉视频| 国产精品久久91| 亚洲自拍另类| 午夜一级在线看亚洲| 国产精品你懂的| 久久爱另类一区二区小说| 亚洲尤物在线视频观看| 国产麻豆日韩欧美久久| 欧美一区免费视频| 午夜精品理论片| 狠狠色综合日日| 欧美寡妇偷汉性猛交| 欧美男人的天堂| 性久久久久久久久| 久久久www成人免费无遮挡大片| 尤物精品在线| 99re6这里只有精品| 国产精品毛片a∨一区二区三区|国| 性欧美xxxx大乳国产app| 午夜精品婷婷| 日韩五码在线| 欧美中文字幕第一页| 99伊人成综合| 久久久九九九九| 午夜一区二区三区不卡视频| 欧美中文字幕久久| 亚洲一区二区精品视频| 久久精品99国产精品| 国产精品99久久久久久白浆小说| 校园春色综合网| 亚洲尤物影院| 欧美日韩国产大片| 欧美激情片在线观看| 国产亚洲电影| 亚洲尤物视频在线| 亚洲一级在线| 欧美久久电影| 日韩视频在线观看国产| 久久精品国产精品亚洲| 欧美专区亚洲专区| 欧美系列电影免费观看| 亚洲精品中文字幕有码专区| 亚洲精品一区二区在线观看| 久久一区二区三区国产精品| 久久精品一区蜜桃臀影院| 国产精品入口麻豆原神| 亚洲午夜激情| 久久天堂国产精品| 亚洲国产精品一区二区第一页| 久久久人成影片一区二区三区| 欧美 日韩 国产精品免费观看| 亚洲电影av| 欧美视频日韩视频在线观看|