青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

逛奔的蝸牛

我不聰明,但我會很努力

   ::  :: 新隨筆 ::  ::  :: 管理 ::
Converting an expression of a given type into another type is known as type-casting. We have already seen some ways to type cast:

Implicit conversion

Implicit conversions do not require any operator. They are automatically performed when a value is copied to a compatible type. For example:

short a=2000;
int b;
b=a;

Here, the value of a has been promoted from short to int and we have not had to specify any type-casting operator. This is known as a standard conversion. Standard conversions affect fundamental data types, and allow conversions such as the conversions between numerical types (short to intint to floatdouble to int...), to or from bool, and some pointer conversions. Some of these conversions may imply a loss of precision, which the compiler can signal with a warning. This can be avoided with an explicit conversion.

Implicit conversions also include constructor or operator conversions, which affect classes that include specific constructors or operator functions to perform conversions. For example:

class A {};
class B { public: B (A a) {} };

A a;
B b=a;

Here, a implicit conversion happened between objects of class A and class B, because B has a constructor that takes an object of class A as parameter. Therefore implicit conversions from A to B are allowed.

Explicit conversion

C++ is a strong-typed language. Many conversions, specially those that imply a different interpretation of the value, require an explicit conversion. We have already seen two notations for explicit type conversion: functional and c-like casting:

short a=2000;
int b;
b = (int) a;    // c-like cast notation
b = int (a);    // functional notation

The functionality of these explicit conversion operators is enough for most needs with fundamental data types. However, these operators can be applied indiscriminately on classes and pointers to classes, which can lead to code that while being syntactically correct can cause runtime errors. For example, the following code is syntactically correct:

// class type-casting
#include <iostream>
using namespace std;

class CDummy {
    float i,j;
};

class CAddition {
	int x,y;
  public:
	CAddition (int a, int b) { x=a; y=b; }
	int result() { return x+y;}
};

int main () {
  CDummy d;
  CAddition * padd;
  padd = (CAddition*) &d;
  cout << padd->result();
  return 0;
}
 

The program declares a pointer to CAddition, but then it assigns to it a reference to an object of another incompatible type using explicit type-casting:

padd = (CAddition*) &d;

Traditional explicit type-casting allows to convert any pointer into any other pointer type, independently of the types they point to. The subsequent call to member result will produce either a run-time error or a unexpected result.

In order to control these types of conversions between classes, we have four specific casting operators: dynamic_castreinterpret_caststatic_cast and const_cast. Their format is to follow the new type enclosed between angle-brackets (<>) and immediately after, the expression to be converted between parentheses.

dynamic_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const_cast <new_type> (expression)

The traditional type-casting equivalents to these expressions would be:

(new_type) expression
new_type (expression)

but each one with its own special characteristics:

dynamic_cast: 轉換子類的指針(或引用)為父類的指針(或引用)

dynamic_cast can be used only with pointers and references to objects. Its purpose is to ensure that the result of the type conversion is a valid complete object of the requested class.

Therefore, dynamic_cast is always successful when we cast a class to one of its base classes:

class CBase { };
class CDerived: public CBase { };

CBase b; CBase* pb;
CDerived d; CDerived* pd;

pb = dynamic_cast<CBase*>(&d);     // ok: derived-to-base
pd = dynamic_cast<CDerived*>(&b);  // wrong: base-to-derived

The second conversion in this piece of code would produce a compilation error since base-to-derived conversions are not allowed with dynamic_cast unless the base class is polymorphic.

When a class is polymorphic, dynamic_cast performs a special checking during runtime to ensure that the expression yields a valid complete object of the requested class:

// dynamic_cast
#include <iostream>
#include <exception>
using namespace std;

class CBase { virtual void dummy() {} };
class CDerived: public CBase { int a; };

int main () {
  try {
    CBase * pba = new CDerived;
    CBase * pbb = new CBase;
    CDerived * pd;

    pd = dynamic_cast<CDerived*>(pba);
    if (pd==0) cout << "Null pointer on first type-cast" << endl;

    pd = dynamic_cast<CDerived*>(pbb);
    if (pd==0) cout << "Null pointer on second type-cast" << endl;

  } catch (exception& e) {cout << "Exception: " << e.what();}
  return 0;
}
Null pointer on second type-cast

Compatibility note: dynamic_cast requires the Run-Time Type Information (RTTI) to keep track of dynamic types. Some compilers support this feature as an option which is disabled by default. This must be enabled for runtime type checking using dynamic_cast to work properly.

The code tries to perform two dynamic casts from pointer objects of type CBase* (pba and pbb) to a pointer object of type CDerived*, but only the first one is successful. Notice their respective initializations:

CBase * pba = new CDerived;
CBase * pbb = new CBase;

Even though both are pointers of type CBase*pba points to an object of type CDerived, while pbb points to an object of type CBase. Thus, when their respective type-castings are performed using dynamic_castpba is pointing to a full object of class CDerived, whereas pbb is pointing to an object of class CBase, which is an incomplete object of class CDerived.

When dynamic_cast cannot cast a pointer because it is not a complete object of the required class -as in the second conversion in the previous example- it returns a null pointer to indicate the failure. If dynamic_cast is used to convert to a reference type and the conversion is not possible, an exception of type bad_cast is thrown instead.

dynamic_cast can also cast null pointers even between pointers to unrelated classes, and can also cast pointers of any type to void pointers (void*).

static_cast: 指針的轉換: 1. 子類和父類之間指針互相轉換(不進行安全檢查). 非指針的轉換: 2. 標準隱式轉換(如int->float, double->int). 3. 用戶定義轉換(構造函數轉換,轉換函數)

static_cast can perform conversions between pointers to related classes, not only from the derived class to its base, but also from a base class to its derived. This ensures that at least the classes are compatible if the proper object is converted, but no safety check is performed during runtime to check if the object being converted is in fact a full object of the destination type. Therefore, it is up to the programmer to ensure that the conversion is safe. On the other side, the overhead of the type-safety checks of dynamic_cast is avoided.

class CBase {};
class CDerived: public CBase {};
CBase * a = new CBase;
CDerived * b = static_cast<CDerived*>(a);

This would be valid, although b would point to an incomplete object of the class and could lead to runtime errors if dereferenced.

static_cast can also be used to perform any other non-pointer conversion that could also be performed implicitly, like for example standard conversion between fundamental types:

double d=3.14159265;
int i = static_cast<int>(d); 

Or any conversion between classes with explicit constructors or operator functions as described in "implicit conversions" above.

reinterpret_cast: 1. 任何指針之間的相互轉換,即使這些類型之間沒有任何關系. 2. 指針和整數類型的相互轉換(指針->int時在Mac上會報錯: loses precision).

reinterpret_cast converts any pointer type to any other pointer type, even of unrelated classes. The operation result is a simple binary copy of the value from one pointer to the other. All pointer conversions are allowed: neither the content pointed nor the pointer type itself is checked.

It can also cast pointers to or from integer types. The format in which this integer value represents a pointer is platform-specific. The only guarantee is that a pointer cast to an integer type large enough to fully contain it, is granted to be able to be cast back to a valid pointer.

The conversions that can be performed by reinterpret_cast but not by static_cast have no specific uses in C++ are low-level operations, whose interpretation results in code which is generally system-specific, and thus non-portable. For example:

class A {};
class B {};
A * a = new A;
B * b = reinterpret_cast<B*>(a);

This is valid C++ code, although it does not make much sense, since now we have a pointer that points to an object of an incompatible class, and thus dereferencing it is unsafe.

const_cast: 轉換對象(primitive類型的不可以: int, float, double...),指針,引用的const屬性,有則去掉,沒有則加上

This type of casting manipulates the constness of an object, either to be set or to be removed. For example, in order to pass a const argument to a function that expects a non-constant parameter:

// const_cast
#include <iostream>
using namespace std;

void print (char * str)
{
  cout << str << endl;
}

int main () {
  const char * c = "sample text";
  print ( const_cast<char *> (c) );
  return 0;
}
sample text

typeid

typeid allows to check the type of an expression:

typeid (expression)

This operator returns a reference to a constant object of type type_info that is defined in the standard header file <typeinfo>. This returned value can be compared with another one using operators == and != or can serve to obtain a null-terminated character sequence representing the data type or class name by using its name() member.

// typeid
#include <iostream>
#include <typeinfo>
using namespace std;

int main () {
  int * a,b;
  a=0; b=0;
  if (typeid(a) != typeid(b))
  {
    cout << "a and b are of different types:\n";
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
  }
  return 0;
}
a and b are of different types:
a is: int *
b is: int  

When typeid is applied to classes typeid uses the RTTI to keep track of the type of dynamic objects. When typeid is applied to an expression whose type is a polymorphic class, the result is the type of the most derived complete object:

// typeid, polymorphic class
#include <iostream>
#include <typeinfo>
#include <exception>
using namespace std;

class CBase { virtual void f(){} };
class CDerived : public CBase {};

int main () {
  try {
    CBase* a = new CBase;
    CBase* b = new CDerived;
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
    cout << "*a is: " << typeid(*a).name() << '\n';
    cout << "*b is: " << typeid(*b).name() << '\n';
  } catch (exception& e) { cout << "Exception: " << e.what() << endl; }
  return 0;
}
a is: class CBase *
b is: class CBase *
*a is: class CBase
*b is: class CDerived

Notice how the type that typeid considers for pointers is the pointer type itself (both a and b are of type class CBase *). However, when typeid is applied to objects (like *a and *btypeid yields their dynamic type (i.e. the type of their most derived complete object: 真實的類型,即使子類對象使用的是父類的指針,但返回的子類的信息).

If the type typeid evaluates is a pointer preceded by the dereference operator (*), and this pointer has a null value, typeid throws a bad_typeid exception.

posted on 2010-10-08 05:25 逛奔的蝸牛 閱讀(746) 評論(0)  編輯 收藏 引用 所屬分類: C/C++
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲一区二区av电影| 亚洲性线免费观看视频成熟| 国产精品99久久久久久久女警| 亚洲一级电影| 欧美黄色aaaa| 亚洲大黄网站| 欧美一区二区三区在| 在线亚洲+欧美+日本专区| 久久久国产精品亚洲一区| 欧美无砖砖区免费| 日韩手机在线导航| 欧美亚洲免费电影| 美女视频一区免费观看| 国产精品都在这里| 夜夜爽av福利精品导航| 亚洲欧美久久久| 欧美一区二区精品| 亚洲久久一区| 国产精品久久久久久久9999| 欧美视频一区二区三区| 一区二区三区精密机械公司| 日韩视频在线一区| 欧美va天堂| 亚洲欧美成aⅴ人在线观看| 一区二区三区av| 亚洲视频在线观看| 欧美肉体xxxx裸体137大胆| 亚洲精品免费在线播放| 国产偷国产偷精品高清尤物| 欧美一区二区三区免费看| 99精品国产福利在线观看免费| 精品99一区二区三区| 欧美成人黑人xx视频免费观看| 国产精品草草| 一区二区在线不卡| 久久精品中文字幕一区| 亚洲在线网站| 国产精品久久午夜夜伦鲁鲁| 亚洲天堂偷拍| 99这里只有精品| 国产精品国码视频| 性8sex亚洲区入口| 午夜精品短视频| 又紧又大又爽精品一区二区| 久久伊人精品天天| 美女久久一区| 亚洲一区免费网站| 亚洲欧美国内爽妇网| 国产亚洲精品久久久久动| 久久久久久亚洲精品杨幂换脸 | 欧美中文字幕第一页| 亚洲在线不卡| 一区二区三区日韩欧美| 欧美中文字幕视频| 亚洲国产午夜| 国产精品嫩草99av在线| 亚洲精品国产系列| 亚洲国产视频直播| 亚洲黄色天堂| 亚洲高清在线精品| 久久丁香综合五月国产三级网站| 欧美精品一区二区三| 欧美日本国产视频| 国产亚洲福利一区| 亚洲一区亚洲| 香蕉尹人综合在线观看| 久久国产主播| 亚洲日韩视频| 农夫在线精品视频免费观看| 麻豆成人在线| 欧美日韩国产精品一区| 国产一区二区三区黄| 农夫在线精品视频免费观看| 久久综合狠狠综合久久综青草| 国产精品黄视频| 亚洲国产欧美精品| 国内精品嫩模av私拍在线观看| 亚洲精品久久久久久久久久久久 | 国产精品99久久不卡二区| 亚洲欧洲日产国产网站| 欧美精品免费看| 欧美国产亚洲另类动漫| 国产毛片一区| 性欧美在线看片a免费观看| 亚洲综合日韩在线| 久久aⅴ国产欧美74aaa| 国产精品永久免费| 久久丁香综合五月国产三级网站| 欧美一区亚洲二区| 国语自产精品视频在线看一大j8 | 久久久久久91香蕉国产| 国产专区欧美专区| 久久天天躁狠狠躁夜夜av| 蜜臀av性久久久久蜜臀aⅴ| 国产日韩精品久久久| 久久久噜噜噜久久中文字免 | 亚洲国产高清自拍| 免费成人高清视频| 久久国产福利| 夜夜嗨av色综合久久久综合网| 欧美午夜久久| 久久人人超碰| 亚洲伊人色欲综合网| 欧美激情亚洲| 久久精品亚洲一区二区三区浴池| 伊人春色精品| 在线播放一区| 国产欧美日本一区二区三区| 欧美xx视频| 久久夜色精品国产欧美乱| 99在线|亚洲一区二区| 欧美国产一区二区在线观看 | 99国产精品自拍| 国产综合色一区二区三区 | 99热精品在线| 亚洲精品免费观看| 亚洲成色777777在线观看影院| 欧美精品在线播放| 美女在线一区二区| 久久久噜久噜久久综合| 久久成人免费电影| 欧美在线视频日韩| 亚洲欧洲偷拍精品| 性色av一区二区三区红粉影视| 国产日韩亚洲欧美| 国产伦精品一区二区三区免费迷 | 亚洲欧美日韩综合| 99riav国产精品| 亚洲欧美综合网| 久久久之久亚州精品露出| 蜜桃精品一区二区三区| 欧美精品播放| 狠狠综合久久av一区二区小说| 香蕉免费一区二区三区在线观看| 亚洲一二三四久久| 亚洲性图久久| 久久手机精品视频| 亚洲激情二区| 亚洲一二三级电影| 麻豆精品91| 国产亚洲一区二区精品| 一区二区三区欧美亚洲| 米奇777在线欧美播放| 在线亚洲欧美| 欧美国产亚洲精品久久久8v| 欧美日韩一区自拍| 亚洲激情自拍| 免费91麻豆精品国产自产在线观看| 一二美女精品欧洲| 欧美.www| 亚洲高清资源| 亚洲国产va精品久久久不卡综合| 亚洲一区二区三区乱码aⅴ蜜桃女 亚洲一区二区三区乱码aⅴ | 欧美综合国产| 亚洲三级影院| 美女主播一区| 欧美一区视频在线| 国产欧美日韩精品专区| 亚洲专区欧美专区| 一区二区免费看| 国产精品久久毛片a| 亚洲欧美一区二区三区在线 | 亚洲男女毛片无遮挡| 一区二区高清| 国产精品自拍小视频| 久久国产精品一区二区三区四区| 亚洲免费影视| 亚洲国产mv| 一区二区欧美日韩| 国产嫩草影院久久久久| 欧美大秀在线观看| 欧美日韩专区| 麻豆av一区二区三区久久| 欧美精品在线免费| 噜噜噜躁狠狠躁狠狠精品视频| 男女视频一区二区| 欧美在线亚洲综合一区| 美女视频黄a大片欧美| 亚洲欧美日韩国产综合精品二区| 欧美影院一区| 亚洲综合色网站| 久久综合伊人77777麻豆| 99国产精品国产精品久久| 久久经典综合| 校园春色国产精品| 欧美视频在线一区| 亚洲国产天堂久久综合网| 国产日韩欧美日韩| 亚洲少妇自拍| 夜夜嗨av一区二区三区网页| 久久婷婷色综合| 久久婷婷久久| 国产一区二区中文字幕免费看| 在线亚洲精品福利网址导航| 亚洲精品一区二区三区樱花| 久久久久国产精品一区| 久久久久在线观看| 国产日韩欧美不卡| 欧美与黑人午夜性猛交久久久| 欧美日韩亚洲另类|