青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

逛奔的蝸牛

我不聰明,但我會很努力

   ::  :: 新隨筆 ::  ::  :: 管理 ::
Converting an expression of a given type into another type is known as type-casting. We have already seen some ways to type cast:

Implicit conversion

Implicit conversions do not require any operator. They are automatically performed when a value is copied to a compatible type. For example:

short a=2000;
int b;
b=a;

Here, the value of a has been promoted from short to int and we have not had to specify any type-casting operator. This is known as a standard conversion. Standard conversions affect fundamental data types, and allow conversions such as the conversions between numerical types (short to intint to floatdouble to int...), to or from bool, and some pointer conversions. Some of these conversions may imply a loss of precision, which the compiler can signal with a warning. This can be avoided with an explicit conversion.

Implicit conversions also include constructor or operator conversions, which affect classes that include specific constructors or operator functions to perform conversions. For example:

class A {};
class B { public: B (A a) {} };

A a;
B b=a;

Here, a implicit conversion happened between objects of class A and class B, because B has a constructor that takes an object of class A as parameter. Therefore implicit conversions from A to B are allowed.

Explicit conversion

C++ is a strong-typed language. Many conversions, specially those that imply a different interpretation of the value, require an explicit conversion. We have already seen two notations for explicit type conversion: functional and c-like casting:

short a=2000;
int b;
b = (int) a;    // c-like cast notation
b = int (a);    // functional notation

The functionality of these explicit conversion operators is enough for most needs with fundamental data types. However, these operators can be applied indiscriminately on classes and pointers to classes, which can lead to code that while being syntactically correct can cause runtime errors. For example, the following code is syntactically correct:

// class type-casting
#include <iostream>
using namespace std;

class CDummy {
    float i,j;
};

class CAddition {
	int x,y;
  public:
	CAddition (int a, int b) { x=a; y=b; }
	int result() { return x+y;}
};

int main () {
  CDummy d;
  CAddition * padd;
  padd = (CAddition*) &d;
  cout << padd->result();
  return 0;
}
 

The program declares a pointer to CAddition, but then it assigns to it a reference to an object of another incompatible type using explicit type-casting:

padd = (CAddition*) &d;

Traditional explicit type-casting allows to convert any pointer into any other pointer type, independently of the types they point to. The subsequent call to member result will produce either a run-time error or a unexpected result.

In order to control these types of conversions between classes, we have four specific casting operators: dynamic_castreinterpret_caststatic_cast and const_cast. Their format is to follow the new type enclosed between angle-brackets (<>) and immediately after, the expression to be converted between parentheses.

dynamic_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const_cast <new_type> (expression)

The traditional type-casting equivalents to these expressions would be:

(new_type) expression
new_type (expression)

but each one with its own special characteristics:

dynamic_cast: 轉換子類的指針(或引用)為父類的指針(或引用)

dynamic_cast can be used only with pointers and references to objects. Its purpose is to ensure that the result of the type conversion is a valid complete object of the requested class.

Therefore, dynamic_cast is always successful when we cast a class to one of its base classes:

class CBase { };
class CDerived: public CBase { };

CBase b; CBase* pb;
CDerived d; CDerived* pd;

pb = dynamic_cast<CBase*>(&d);     // ok: derived-to-base
pd = dynamic_cast<CDerived*>(&b);  // wrong: base-to-derived

The second conversion in this piece of code would produce a compilation error since base-to-derived conversions are not allowed with dynamic_cast unless the base class is polymorphic.

When a class is polymorphic, dynamic_cast performs a special checking during runtime to ensure that the expression yields a valid complete object of the requested class:

// dynamic_cast
#include <iostream>
#include <exception>
using namespace std;

class CBase { virtual void dummy() {} };
class CDerived: public CBase { int a; };

int main () {
  try {
    CBase * pba = new CDerived;
    CBase * pbb = new CBase;
    CDerived * pd;

    pd = dynamic_cast<CDerived*>(pba);
    if (pd==0) cout << "Null pointer on first type-cast" << endl;

    pd = dynamic_cast<CDerived*>(pbb);
    if (pd==0) cout << "Null pointer on second type-cast" << endl;

  } catch (exception& e) {cout << "Exception: " << e.what();}
  return 0;
}
Null pointer on second type-cast

Compatibility note: dynamic_cast requires the Run-Time Type Information (RTTI) to keep track of dynamic types. Some compilers support this feature as an option which is disabled by default. This must be enabled for runtime type checking using dynamic_cast to work properly.

The code tries to perform two dynamic casts from pointer objects of type CBase* (pba and pbb) to a pointer object of type CDerived*, but only the first one is successful. Notice their respective initializations:

CBase * pba = new CDerived;
CBase * pbb = new CBase;

Even though both are pointers of type CBase*pba points to an object of type CDerived, while pbb points to an object of type CBase. Thus, when their respective type-castings are performed using dynamic_castpba is pointing to a full object of class CDerived, whereas pbb is pointing to an object of class CBase, which is an incomplete object of class CDerived.

When dynamic_cast cannot cast a pointer because it is not a complete object of the required class -as in the second conversion in the previous example- it returns a null pointer to indicate the failure. If dynamic_cast is used to convert to a reference type and the conversion is not possible, an exception of type bad_cast is thrown instead.

dynamic_cast can also cast null pointers even between pointers to unrelated classes, and can also cast pointers of any type to void pointers (void*).

static_cast: 指針的轉換: 1. 子類和父類之間指針互相轉換(不進行安全檢查). 非指針的轉換: 2. 標準隱式轉換(如int->float, double->int). 3. 用戶定義轉換(構造函數轉換,轉換函數)

static_cast can perform conversions between pointers to related classes, not only from the derived class to its base, but also from a base class to its derived. This ensures that at least the classes are compatible if the proper object is converted, but no safety check is performed during runtime to check if the object being converted is in fact a full object of the destination type. Therefore, it is up to the programmer to ensure that the conversion is safe. On the other side, the overhead of the type-safety checks of dynamic_cast is avoided.

class CBase {};
class CDerived: public CBase {};
CBase * a = new CBase;
CDerived * b = static_cast<CDerived*>(a);

This would be valid, although b would point to an incomplete object of the class and could lead to runtime errors if dereferenced.

static_cast can also be used to perform any other non-pointer conversion that could also be performed implicitly, like for example standard conversion between fundamental types:

double d=3.14159265;
int i = static_cast<int>(d); 

Or any conversion between classes with explicit constructors or operator functions as described in "implicit conversions" above.

reinterpret_cast: 1. 任何指針之間的相互轉換,即使這些類型之間沒有任何關系. 2. 指針和整數類型的相互轉換(指針->int時在Mac上會報錯: loses precision).

reinterpret_cast converts any pointer type to any other pointer type, even of unrelated classes. The operation result is a simple binary copy of the value from one pointer to the other. All pointer conversions are allowed: neither the content pointed nor the pointer type itself is checked.

It can also cast pointers to or from integer types. The format in which this integer value represents a pointer is platform-specific. The only guarantee is that a pointer cast to an integer type large enough to fully contain it, is granted to be able to be cast back to a valid pointer.

The conversions that can be performed by reinterpret_cast but not by static_cast have no specific uses in C++ are low-level operations, whose interpretation results in code which is generally system-specific, and thus non-portable. For example:

class A {};
class B {};
A * a = new A;
B * b = reinterpret_cast<B*>(a);

This is valid C++ code, although it does not make much sense, since now we have a pointer that points to an object of an incompatible class, and thus dereferencing it is unsafe.

const_cast: 轉換對象(primitive類型的不可以: int, float, double...),指針,引用的const屬性,有則去掉,沒有則加上

This type of casting manipulates the constness of an object, either to be set or to be removed. For example, in order to pass a const argument to a function that expects a non-constant parameter:

// const_cast
#include <iostream>
using namespace std;

void print (char * str)
{
  cout << str << endl;
}

int main () {
  const char * c = "sample text";
  print ( const_cast<char *> (c) );
  return 0;
}
sample text

typeid

typeid allows to check the type of an expression:

typeid (expression)

This operator returns a reference to a constant object of type type_info that is defined in the standard header file <typeinfo>. This returned value can be compared with another one using operators == and != or can serve to obtain a null-terminated character sequence representing the data type or class name by using its name() member.

// typeid
#include <iostream>
#include <typeinfo>
using namespace std;

int main () {
  int * a,b;
  a=0; b=0;
  if (typeid(a) != typeid(b))
  {
    cout << "a and b are of different types:\n";
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
  }
  return 0;
}
a and b are of different types:
a is: int *
b is: int  

When typeid is applied to classes typeid uses the RTTI to keep track of the type of dynamic objects. When typeid is applied to an expression whose type is a polymorphic class, the result is the type of the most derived complete object:

// typeid, polymorphic class
#include <iostream>
#include <typeinfo>
#include <exception>
using namespace std;

class CBase { virtual void f(){} };
class CDerived : public CBase {};

int main () {
  try {
    CBase* a = new CBase;
    CBase* b = new CDerived;
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
    cout << "*a is: " << typeid(*a).name() << '\n';
    cout << "*b is: " << typeid(*b).name() << '\n';
  } catch (exception& e) { cout << "Exception: " << e.what() << endl; }
  return 0;
}
a is: class CBase *
b is: class CBase *
*a is: class CBase
*b is: class CDerived

Notice how the type that typeid considers for pointers is the pointer type itself (both a and b are of type class CBase *). However, when typeid is applied to objects (like *a and *btypeid yields their dynamic type (i.e. the type of their most derived complete object: 真實的類型,即使子類對象使用的是父類的指針,但返回的子類的信息).

If the type typeid evaluates is a pointer preceded by the dereference operator (*), and this pointer has a null value, typeid throws a bad_typeid exception.

posted on 2010-10-08 05:25 逛奔的蝸牛 閱讀(746) 評論(0)  編輯 收藏 引用 所屬分類: C/C++
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            性欧美激情精品| 久久欧美中文字幕| 国产日韩精品一区二区| 国产精品成人v| 国产精品三级视频| 国内成人自拍视频| 亚洲激情自拍| 亚洲一区欧美| 久久久一区二区| 欧美福利精品| 这里只有精品丝袜| 亚洲欧美久久久| 蜜桃精品久久久久久久免费影院| 欧美国产一区二区| 欧美视频福利| 老司机一区二区三区| 9l国产精品久久久久麻豆| 亚洲一区免费观看| 狼狼综合久久久久综合网| 91久久夜色精品国产九色| 亚洲国产精品热久久| 亚洲欧美日韩高清| 欧美国产欧美综合| 国产真实久久| 一区二区三区蜜桃网| 久久噜噜噜精品国产亚洲综合| 欧美激情日韩| 欧美一区中文字幕| 欧美日韩一区在线播放| 在线视频国内自拍亚洲视频| 亚洲影音一区| 亚洲国产精品第一区二区| 香港成人在线视频| 欧美日韩一区二区三区免费看| 国产日韩亚洲欧美| 午夜精品99久久免费| 亚洲国产精品电影| 久久久噜噜噜久噜久久| 国产精品五月天| 亚洲天堂激情| 亚洲九九精品| 欧美黄网免费在线观看| 亚洲高清资源综合久久精品| 欧美一区二区三区的| 99精品欧美一区| 欧美日韩ab| 日韩一区二区精品视频| 欧美成人免费视频| 久久国产高清| 国产专区综合网| 久久精品五月婷婷| 亚洲欧美日韩精品久久久久| 欧美三日本三级三级在线播放| 亚洲精品一区二区三区蜜桃久| 久久久久久夜| 欧美中文字幕精品| 国产一区二区三区在线播放免费观看| 午夜在线不卡| 午夜精品久久久久99热蜜桃导演| 国产精品美女久久久久久久| 亚洲一区久久久| 亚洲男人第一av网站| 国产乱码精品1区2区3区| 午夜精品成人在线| 香蕉免费一区二区三区在线观看| 国产精品伊人日日| 久久精品亚洲热| 久久成人羞羞网站| 亚洲盗摄视频| 亚洲国产婷婷香蕉久久久久久| 欧美激情视频给我| 一区二区三区视频在线| 亚洲天堂第二页| 国产偷久久久精品专区| 久久亚洲春色中文字幕| 日韩视频不卡| 亚洲网友自拍| 国产一区二区三区免费观看| 久久亚洲精品一区二区| 毛片基地黄久久久久久天堂| a4yy欧美一区二区三区| 亚洲在线成人| 亚洲国产电影| 亚洲一级在线观看| 国产一区二区三区黄视频| 蜜桃av综合| 国产精品xxxxx| 久久亚洲精品伦理| 欧美日韩国产综合视频在线| 久久国产99| 欧美国产日韩精品| 欧美在线国产精品| 免费一级欧美在线大片| 午夜激情久久久| 欧美国产精品人人做人人爱| 亚洲欧美激情精品一区二区| 久久综合九色综合欧美狠狠| 亚洲伦理一区| 欧美综合激情网| 99精品黄色片免费大全| 久久成人精品| 亚洲一品av免费观看| 久久艳片www.17c.com| 亚洲一区二区视频| 久久综合999| 久久精品99国产精品| 欧美本精品男人aⅴ天堂| 欧美一区二区三区婷婷月色 | 免费亚洲一区| 久久精品官网| 欧美午夜不卡| 亚洲国产日韩在线一区模特| 国产一区二区看久久| 一区二区三区日韩在线观看| 亚洲激情综合| 久久一区二区三区四区| 香蕉久久a毛片| 欧美三日本三级少妇三99| 欧美成人蜜桃| 在线观看中文字幕亚洲| 欧美一区二区三区四区在线 | 欧美激情精品久久久久久| 久久久久久久一区| 国产精品丝袜白浆摸在线| 日韩视频在线一区| 亚洲美女视频网| 美女精品网站| 亚洲第一精品在线| 在线观看亚洲一区| 久久精品免费观看| 久久久久久高潮国产精品视| 国产酒店精品激情| 欧美一区二区三区免费视频| 午夜精品视频一区| 久久精品91| 国产日韩欧美中文| 亚洲欧美在线免费观看| 欧美一区1区三区3区公司| 国产精品裸体一区二区三区| 亚洲午夜一区二区| 欧美在线免费播放| 国产亚洲一级高清| 久久本道综合色狠狠五月| 久久综合99re88久久爱| 一区二区三区在线高清| 久久伊人精品天天| 欧美激情一区二区三区在线视频| 亚洲日本中文字幕免费在线不卡| 欧美成人高清视频| 日韩香蕉视频| 久久高清国产| 亚洲国产影院| 欧美日韩精品一区二区| 亚洲一区二区三区免费视频| 久久精品国产亚洲精品| 又紧又大又爽精品一区二区| 欧美大色视频| 一区二区三区日韩在线观看| 欧美在线影院在线视频| 亚洲天堂网站在线观看视频| 亚洲欧美国产精品桃花| 激情一区二区| 欧美日韩亚洲三区| 欧美在线观看天堂一区二区三区 | 亚洲一区二区成人| 久久九九精品99国产精品| 亚洲欧洲另类国产综合| 欧美性天天影院| 久久精品国产清高在天天线 | 狠狠做深爱婷婷久久综合一区| 久久综合久久综合久久综合| 一本色道久久综合精品竹菊| 久久人人看视频| 亚洲深夜激情| 亚洲国产精品一区二区www在线| 欧美欧美在线| 久久久久欧美| 亚洲图片在线| 亚洲黄色小视频| 久久精品亚洲| 亚洲欧美久久久| 亚洲黄色在线观看| 国产一区91| 国产精品美女久久久| 欧美极品欧美精品欧美视频| 欧美一级黄色网| 中日韩视频在线观看| 亚洲国产精品久久人人爱蜜臀| 久久久亚洲精品一区二区三区| 亚洲欧美一区二区精品久久久| 亚洲美女视频| 亚洲日本va在线观看| 黄网站色欧美视频| 国产欧美在线观看| 亚洲人成网站影音先锋播放| 国产欧美日韩一区二区三区在线| 欧美久久99| 欧美精品日韩一本| 欧美二区在线播放| 欧美1区免费|