青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

逛奔的蝸牛

我不聰明,但我會很努力

   ::  :: 新隨筆 ::  ::  :: 管理 ::
Converting an expression of a given type into another type is known as type-casting. We have already seen some ways to type cast:

Implicit conversion

Implicit conversions do not require any operator. They are automatically performed when a value is copied to a compatible type. For example:

short a=2000;
int b;
b=a;

Here, the value of a has been promoted from short to int and we have not had to specify any type-casting operator. This is known as a standard conversion. Standard conversions affect fundamental data types, and allow conversions such as the conversions between numerical types (short to intint to floatdouble to int...), to or from bool, and some pointer conversions. Some of these conversions may imply a loss of precision, which the compiler can signal with a warning. This can be avoided with an explicit conversion.

Implicit conversions also include constructor or operator conversions, which affect classes that include specific constructors or operator functions to perform conversions. For example:

class A {};
class B { public: B (A a) {} };

A a;
B b=a;

Here, a implicit conversion happened between objects of class A and class B, because B has a constructor that takes an object of class A as parameter. Therefore implicit conversions from A to B are allowed.

Explicit conversion

C++ is a strong-typed language. Many conversions, specially those that imply a different interpretation of the value, require an explicit conversion. We have already seen two notations for explicit type conversion: functional and c-like casting:

short a=2000;
int b;
b = (int) a;    // c-like cast notation
b = int (a);    // functional notation

The functionality of these explicit conversion operators is enough for most needs with fundamental data types. However, these operators can be applied indiscriminately on classes and pointers to classes, which can lead to code that while being syntactically correct can cause runtime errors. For example, the following code is syntactically correct:

// class type-casting
#include <iostream>
using namespace std;

class CDummy {
    float i,j;
};

class CAddition {
	int x,y;
  public:
	CAddition (int a, int b) { x=a; y=b; }
	int result() { return x+y;}
};

int main () {
  CDummy d;
  CAddition * padd;
  padd = (CAddition*) &d;
  cout << padd->result();
  return 0;
}
 

The program declares a pointer to CAddition, but then it assigns to it a reference to an object of another incompatible type using explicit type-casting:

padd = (CAddition*) &d;

Traditional explicit type-casting allows to convert any pointer into any other pointer type, independently of the types they point to. The subsequent call to member result will produce either a run-time error or a unexpected result.

In order to control these types of conversions between classes, we have four specific casting operators: dynamic_castreinterpret_caststatic_cast and const_cast. Their format is to follow the new type enclosed between angle-brackets (<>) and immediately after, the expression to be converted between parentheses.

dynamic_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const_cast <new_type> (expression)

The traditional type-casting equivalents to these expressions would be:

(new_type) expression
new_type (expression)

but each one with its own special characteristics:

dynamic_cast: 轉換子類的指針(或引用)為父類的指針(或引用)

dynamic_cast can be used only with pointers and references to objects. Its purpose is to ensure that the result of the type conversion is a valid complete object of the requested class.

Therefore, dynamic_cast is always successful when we cast a class to one of its base classes:

class CBase { };
class CDerived: public CBase { };

CBase b; CBase* pb;
CDerived d; CDerived* pd;

pb = dynamic_cast<CBase*>(&d);     // ok: derived-to-base
pd = dynamic_cast<CDerived*>(&b);  // wrong: base-to-derived

The second conversion in this piece of code would produce a compilation error since base-to-derived conversions are not allowed with dynamic_cast unless the base class is polymorphic.

When a class is polymorphic, dynamic_cast performs a special checking during runtime to ensure that the expression yields a valid complete object of the requested class:

// dynamic_cast
#include <iostream>
#include <exception>
using namespace std;

class CBase { virtual void dummy() {} };
class CDerived: public CBase { int a; };

int main () {
  try {
    CBase * pba = new CDerived;
    CBase * pbb = new CBase;
    CDerived * pd;

    pd = dynamic_cast<CDerived*>(pba);
    if (pd==0) cout << "Null pointer on first type-cast" << endl;

    pd = dynamic_cast<CDerived*>(pbb);
    if (pd==0) cout << "Null pointer on second type-cast" << endl;

  } catch (exception& e) {cout << "Exception: " << e.what();}
  return 0;
}
Null pointer on second type-cast

Compatibility note: dynamic_cast requires the Run-Time Type Information (RTTI) to keep track of dynamic types. Some compilers support this feature as an option which is disabled by default. This must be enabled for runtime type checking using dynamic_cast to work properly.

The code tries to perform two dynamic casts from pointer objects of type CBase* (pba and pbb) to a pointer object of type CDerived*, but only the first one is successful. Notice their respective initializations:

CBase * pba = new CDerived;
CBase * pbb = new CBase;

Even though both are pointers of type CBase*pba points to an object of type CDerived, while pbb points to an object of type CBase. Thus, when their respective type-castings are performed using dynamic_castpba is pointing to a full object of class CDerived, whereas pbb is pointing to an object of class CBase, which is an incomplete object of class CDerived.

When dynamic_cast cannot cast a pointer because it is not a complete object of the required class -as in the second conversion in the previous example- it returns a null pointer to indicate the failure. If dynamic_cast is used to convert to a reference type and the conversion is not possible, an exception of type bad_cast is thrown instead.

dynamic_cast can also cast null pointers even between pointers to unrelated classes, and can also cast pointers of any type to void pointers (void*).

static_cast: 指針的轉換: 1. 子類和父類之間指針互相轉換(不進行安全檢查). 非指針的轉換: 2. 標準隱式轉換(如int->float, double->int). 3. 用戶定義轉換(構造函數轉換,轉換函數)

static_cast can perform conversions between pointers to related classes, not only from the derived class to its base, but also from a base class to its derived. This ensures that at least the classes are compatible if the proper object is converted, but no safety check is performed during runtime to check if the object being converted is in fact a full object of the destination type. Therefore, it is up to the programmer to ensure that the conversion is safe. On the other side, the overhead of the type-safety checks of dynamic_cast is avoided.

class CBase {};
class CDerived: public CBase {};
CBase * a = new CBase;
CDerived * b = static_cast<CDerived*>(a);

This would be valid, although b would point to an incomplete object of the class and could lead to runtime errors if dereferenced.

static_cast can also be used to perform any other non-pointer conversion that could also be performed implicitly, like for example standard conversion between fundamental types:

double d=3.14159265;
int i = static_cast<int>(d); 

Or any conversion between classes with explicit constructors or operator functions as described in "implicit conversions" above.

reinterpret_cast: 1. 任何指針之間的相互轉換,即使這些類型之間沒有任何關系. 2. 指針和整數類型的相互轉換(指針->int時在Mac上會報錯: loses precision).

reinterpret_cast converts any pointer type to any other pointer type, even of unrelated classes. The operation result is a simple binary copy of the value from one pointer to the other. All pointer conversions are allowed: neither the content pointed nor the pointer type itself is checked.

It can also cast pointers to or from integer types. The format in which this integer value represents a pointer is platform-specific. The only guarantee is that a pointer cast to an integer type large enough to fully contain it, is granted to be able to be cast back to a valid pointer.

The conversions that can be performed by reinterpret_cast but not by static_cast have no specific uses in C++ are low-level operations, whose interpretation results in code which is generally system-specific, and thus non-portable. For example:

class A {};
class B {};
A * a = new A;
B * b = reinterpret_cast<B*>(a);

This is valid C++ code, although it does not make much sense, since now we have a pointer that points to an object of an incompatible class, and thus dereferencing it is unsafe.

const_cast: 轉換對象(primitive類型的不可以: int, float, double...),指針,引用的const屬性,有則去掉,沒有則加上

This type of casting manipulates the constness of an object, either to be set or to be removed. For example, in order to pass a const argument to a function that expects a non-constant parameter:

// const_cast
#include <iostream>
using namespace std;

void print (char * str)
{
  cout << str << endl;
}

int main () {
  const char * c = "sample text";
  print ( const_cast<char *> (c) );
  return 0;
}
sample text

typeid

typeid allows to check the type of an expression:

typeid (expression)

This operator returns a reference to a constant object of type type_info that is defined in the standard header file <typeinfo>. This returned value can be compared with another one using operators == and != or can serve to obtain a null-terminated character sequence representing the data type or class name by using its name() member.

// typeid
#include <iostream>
#include <typeinfo>
using namespace std;

int main () {
  int * a,b;
  a=0; b=0;
  if (typeid(a) != typeid(b))
  {
    cout << "a and b are of different types:\n";
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
  }
  return 0;
}
a and b are of different types:
a is: int *
b is: int  

When typeid is applied to classes typeid uses the RTTI to keep track of the type of dynamic objects. When typeid is applied to an expression whose type is a polymorphic class, the result is the type of the most derived complete object:

// typeid, polymorphic class
#include <iostream>
#include <typeinfo>
#include <exception>
using namespace std;

class CBase { virtual void f(){} };
class CDerived : public CBase {};

int main () {
  try {
    CBase* a = new CBase;
    CBase* b = new CDerived;
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
    cout << "*a is: " << typeid(*a).name() << '\n';
    cout << "*b is: " << typeid(*b).name() << '\n';
  } catch (exception& e) { cout << "Exception: " << e.what() << endl; }
  return 0;
}
a is: class CBase *
b is: class CBase *
*a is: class CBase
*b is: class CDerived

Notice how the type that typeid considers for pointers is the pointer type itself (both a and b are of type class CBase *). However, when typeid is applied to objects (like *a and *btypeid yields their dynamic type (i.e. the type of their most derived complete object: 真實的類型,即使子類對象使用的是父類的指針,但返回的子類的信息).

If the type typeid evaluates is a pointer preceded by the dereference operator (*), and this pointer has a null value, typeid throws a bad_typeid exception.

posted on 2010-10-08 05:25 逛奔的蝸牛 閱讀(746) 評論(0)  編輯 收藏 引用 所屬分類: C/C++
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美区日韩区| 久久国产精品99国产| 狠狠网亚洲精品| 亚洲国内自拍| 亚洲一区二区影院| 久久中文久久字幕| 亚洲天天影视| 国产精品久久久久久久久动漫| 亚洲精品一区二区在线观看| 国产欧美日韩一区| 国产日产精品一区二区三区四区的观看方式 | 亚洲人www| 国产日韩精品一区观看| 欧美电影在线免费观看网站| 一片黄亚洲嫩模| 国产精品久久久久久久9999 | 欧美高清视频| 国产亚洲免费的视频看| 免费影视亚洲| 亚洲视频一二区| 欧美高清视频一区二区三区在线观看| 久久嫩草精品久久久久| 亚洲精品免费观看| 在线观看国产精品网站| 亚洲国产综合在线| 亚洲欧美成人精品| 欧美91福利在线观看| 一级成人国产| 噜噜噜躁狠狠躁狠狠精品视频 | 久久久国产一区二区| 欧美激情亚洲国产| 国产一区二区三区久久久| 日韩视频第一页| 久久漫画官网| 亚洲影院污污.| 欧美日韩成人一区二区| 在线欧美日韩精品| 久久久久久久久久久一区 | 一本色道久久综合亚洲精品婷婷| 久久高清一区| 一本色道久久综合亚洲91| 老司机一区二区三区| 国产一区二区在线免费观看 | 久久人91精品久久久久久不卡| 国产精品电影在线观看| 亚洲精品日韩欧美| 欧美激情在线| 久久亚洲一区二区| 狠狠色狠狠色综合系列| 欧美一区观看| 亚洲一区二区三区视频| 欧美日韩一区二区国产| 日韩视频免费看| 亚洲欧洲一二三| 免费日韩av电影| 亚洲福利国产精品| 久久综合五月天婷婷伊人| 亚洲免费影视| 国产欧美日韩一级| 男人的天堂亚洲在线| 在线观看欧美日韩| 亚洲国产日韩欧美一区二区三区| 一区精品久久| 日韩午夜激情av| 麻豆成人小视频| 亚洲欧美日韩直播| 欧美破处大片在线视频| 在线播放日韩欧美| 久久嫩草精品久久久精品一| 久久精品夜色噜噜亚洲aⅴ| 欧美性猛交一区二区三区精品| 91久久线看在观草草青青| 欧美成人午夜激情视频| 免费在线亚洲| 这里只有精品在线播放| 中文欧美在线视频| 国产亚洲aⅴaaaaaa毛片| 久久精品一区二区三区四区| 久久不射电影网| 亚洲精品久久久久久久久| 欧美激情国产精品| 欧美视频一区二区三区在线观看 | 在线免费观看视频一区| 久久天天躁狠狠躁夜夜爽蜜月| 久久99在线观看| 亚洲国产毛片完整版 | 亚洲少妇中出一区| 国产精品99久久久久久久久久久久| 欧美午夜一区| 久久久久久久久岛国免费| 久久久久久久性| 亚洲人精品午夜在线观看| 亚洲国产另类久久久精品极度| 欧美日韩综合网| 久久久www| 欧美精品亚洲| 亚洲男同1069视频| 欧美一级午夜免费电影| 亚洲美女黄色| 亚洲一区二区欧美日韩| 激情成人综合| 日韩一区二区精品| 国产婷婷色一区二区三区四区| 蜜桃av久久久亚洲精品| 欧美日韩中文精品| 嫩草影视亚洲| 国产精品视频成人| 国产一区二区欧美日韩| 久久精品盗摄| 欧美精品一区二区三区四区 | 亚洲欧美一区二区三区在线| 欧美在线观看网站| 一区二区高清视频| 蜜臀av性久久久久蜜臀aⅴ四虎| 欧美一级片一区| 欧美精品久久一区| 麻豆精品精华液| 国产欧美日韩亚州综合| 亚洲理伦在线| 亚洲人成网站在线观看播放| 欧美制服丝袜第一页| 亚洲欧美成人网| 欧美日韩一二三区| 亚洲欧洲中文日韩久久av乱码| 精品动漫3d一区二区三区免费版 | 久久在精品线影院精品国产| 欧美性大战久久久久久久蜜臀| 亚洲国产精品久久久久久女王| 国产综合激情| 久久爱www.| 久久综合电影一区| 国产一区香蕉久久| 久久gogo国模啪啪人体图| 香蕉亚洲视频| 国产欧美不卡| 欧美一级久久久久久久大片| 久久精品国语| 激情懂色av一区av二区av| 久久久久国内| 欧美国产三级| 亚洲另类自拍| 欧美日韩精品不卡| 一区二区高清| 欧美一级网站| 国内视频一区| 蜜桃久久av| 亚洲老板91色精品久久| 亚洲一区精品视频| 国产毛片精品视频| 久久99在线观看| 欧美福利电影在线观看| 亚洲精品乱码久久久久久按摩观| 麻豆freexxxx性91精品| 亚洲成色999久久网站| 亚洲国内精品在线| 欧美日本国产| 亚洲欧美国产三级| 免费成人av在线看| 亚洲免费电影在线| 国产精品成人一区二区艾草| 亚洲视频久久| 久久精品国产91精品亚洲| 国内精品美女av在线播放| 久久久精彩视频| 久久成人18免费网站| 国产自产在线视频一区| 久久国产精品一区二区三区四区| 久久久久久亚洲综合影院红桃 | 午夜亚洲一区| 欧美亚洲自偷自偷| 女人香蕉久久**毛片精品| 亚洲精品免费一二三区| 亚洲男人的天堂在线| 韩国女主播一区二区三区| 麻豆国产精品一区二区三区| 99国产欧美久久久精品| 亚洲永久免费精品| 国产亚洲第一区| 美女视频黄免费的久久| 亚洲国语精品自产拍在线观看| 99国产麻豆精品| 国产精品一区三区| 久久久无码精品亚洲日韩按摩| 日韩图片一区| 美国十次了思思久久精品导航| 亚洲特级片在线| 在线欧美亚洲| 国产精品女主播| 欧美精品日本| 亚洲精品五月天| 日韩亚洲视频在线| 最新成人在线| 国产精品www.| 久久人人精品| 亚洲国产精品一区二区尤物区| 日韩一级免费| 国产欧美亚洲视频| 欧美激情国产精品| 久久亚洲美女| 久久国产精品久久精品国产 |