青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

逛奔的蝸牛

我不聰明,但我會很努力

   ::  :: 新隨筆 ::  ::  :: 管理 ::
Converting an expression of a given type into another type is known as type-casting. We have already seen some ways to type cast:

Implicit conversion

Implicit conversions do not require any operator. They are automatically performed when a value is copied to a compatible type. For example:

short a=2000;
int b;
b=a;

Here, the value of a has been promoted from short to int and we have not had to specify any type-casting operator. This is known as a standard conversion. Standard conversions affect fundamental data types, and allow conversions such as the conversions between numerical types (short to intint to floatdouble to int...), to or from bool, and some pointer conversions. Some of these conversions may imply a loss of precision, which the compiler can signal with a warning. This can be avoided with an explicit conversion.

Implicit conversions also include constructor or operator conversions, which affect classes that include specific constructors or operator functions to perform conversions. For example:

class A {};
class B { public: B (A a) {} };

A a;
B b=a;

Here, a implicit conversion happened between objects of class A and class B, because B has a constructor that takes an object of class A as parameter. Therefore implicit conversions from A to B are allowed.

Explicit conversion

C++ is a strong-typed language. Many conversions, specially those that imply a different interpretation of the value, require an explicit conversion. We have already seen two notations for explicit type conversion: functional and c-like casting:

short a=2000;
int b;
b = (int) a;    // c-like cast notation
b = int (a);    // functional notation

The functionality of these explicit conversion operators is enough for most needs with fundamental data types. However, these operators can be applied indiscriminately on classes and pointers to classes, which can lead to code that while being syntactically correct can cause runtime errors. For example, the following code is syntactically correct:

// class type-casting
#include <iostream>
using namespace std;

class CDummy {
    float i,j;
};

class CAddition {
	int x,y;
  public:
	CAddition (int a, int b) { x=a; y=b; }
	int result() { return x+y;}
};

int main () {
  CDummy d;
  CAddition * padd;
  padd = (CAddition*) &d;
  cout << padd->result();
  return 0;
}
 

The program declares a pointer to CAddition, but then it assigns to it a reference to an object of another incompatible type using explicit type-casting:

padd = (CAddition*) &d;

Traditional explicit type-casting allows to convert any pointer into any other pointer type, independently of the types they point to. The subsequent call to member result will produce either a run-time error or a unexpected result.

In order to control these types of conversions between classes, we have four specific casting operators: dynamic_castreinterpret_caststatic_cast and const_cast. Their format is to follow the new type enclosed between angle-brackets (<>) and immediately after, the expression to be converted between parentheses.

dynamic_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const_cast <new_type> (expression)

The traditional type-casting equivalents to these expressions would be:

(new_type) expression
new_type (expression)

but each one with its own special characteristics:

dynamic_cast: 轉換子類的指針(或引用)為父類的指針(或引用)

dynamic_cast can be used only with pointers and references to objects. Its purpose is to ensure that the result of the type conversion is a valid complete object of the requested class.

Therefore, dynamic_cast is always successful when we cast a class to one of its base classes:

class CBase { };
class CDerived: public CBase { };

CBase b; CBase* pb;
CDerived d; CDerived* pd;

pb = dynamic_cast<CBase*>(&d);     // ok: derived-to-base
pd = dynamic_cast<CDerived*>(&b);  // wrong: base-to-derived

The second conversion in this piece of code would produce a compilation error since base-to-derived conversions are not allowed with dynamic_cast unless the base class is polymorphic.

When a class is polymorphic, dynamic_cast performs a special checking during runtime to ensure that the expression yields a valid complete object of the requested class:

// dynamic_cast
#include <iostream>
#include <exception>
using namespace std;

class CBase { virtual void dummy() {} };
class CDerived: public CBase { int a; };

int main () {
  try {
    CBase * pba = new CDerived;
    CBase * pbb = new CBase;
    CDerived * pd;

    pd = dynamic_cast<CDerived*>(pba);
    if (pd==0) cout << "Null pointer on first type-cast" << endl;

    pd = dynamic_cast<CDerived*>(pbb);
    if (pd==0) cout << "Null pointer on second type-cast" << endl;

  } catch (exception& e) {cout << "Exception: " << e.what();}
  return 0;
}
Null pointer on second type-cast

Compatibility note: dynamic_cast requires the Run-Time Type Information (RTTI) to keep track of dynamic types. Some compilers support this feature as an option which is disabled by default. This must be enabled for runtime type checking using dynamic_cast to work properly.

The code tries to perform two dynamic casts from pointer objects of type CBase* (pba and pbb) to a pointer object of type CDerived*, but only the first one is successful. Notice their respective initializations:

CBase * pba = new CDerived;
CBase * pbb = new CBase;

Even though both are pointers of type CBase*pba points to an object of type CDerived, while pbb points to an object of type CBase. Thus, when their respective type-castings are performed using dynamic_castpba is pointing to a full object of class CDerived, whereas pbb is pointing to an object of class CBase, which is an incomplete object of class CDerived.

When dynamic_cast cannot cast a pointer because it is not a complete object of the required class -as in the second conversion in the previous example- it returns a null pointer to indicate the failure. If dynamic_cast is used to convert to a reference type and the conversion is not possible, an exception of type bad_cast is thrown instead.

dynamic_cast can also cast null pointers even between pointers to unrelated classes, and can also cast pointers of any type to void pointers (void*).

static_cast: 指針的轉換: 1. 子類和父類之間指針互相轉換(不進行安全檢查). 非指針的轉換: 2. 標準隱式轉換(如int->float, double->int). 3. 用戶定義轉換(構造函數轉換,轉換函數)

static_cast can perform conversions between pointers to related classes, not only from the derived class to its base, but also from a base class to its derived. This ensures that at least the classes are compatible if the proper object is converted, but no safety check is performed during runtime to check if the object being converted is in fact a full object of the destination type. Therefore, it is up to the programmer to ensure that the conversion is safe. On the other side, the overhead of the type-safety checks of dynamic_cast is avoided.

class CBase {};
class CDerived: public CBase {};
CBase * a = new CBase;
CDerived * b = static_cast<CDerived*>(a);

This would be valid, although b would point to an incomplete object of the class and could lead to runtime errors if dereferenced.

static_cast can also be used to perform any other non-pointer conversion that could also be performed implicitly, like for example standard conversion between fundamental types:

double d=3.14159265;
int i = static_cast<int>(d); 

Or any conversion between classes with explicit constructors or operator functions as described in "implicit conversions" above.

reinterpret_cast: 1. 任何指針之間的相互轉換,即使這些類型之間沒有任何關系. 2. 指針和整數類型的相互轉換(指針->int時在Mac上會報錯: loses precision).

reinterpret_cast converts any pointer type to any other pointer type, even of unrelated classes. The operation result is a simple binary copy of the value from one pointer to the other. All pointer conversions are allowed: neither the content pointed nor the pointer type itself is checked.

It can also cast pointers to or from integer types. The format in which this integer value represents a pointer is platform-specific. The only guarantee is that a pointer cast to an integer type large enough to fully contain it, is granted to be able to be cast back to a valid pointer.

The conversions that can be performed by reinterpret_cast but not by static_cast have no specific uses in C++ are low-level operations, whose interpretation results in code which is generally system-specific, and thus non-portable. For example:

class A {};
class B {};
A * a = new A;
B * b = reinterpret_cast<B*>(a);

This is valid C++ code, although it does not make much sense, since now we have a pointer that points to an object of an incompatible class, and thus dereferencing it is unsafe.

const_cast: 轉換對象(primitive類型的不可以: int, float, double...),指針,引用的const屬性,有則去掉,沒有則加上

This type of casting manipulates the constness of an object, either to be set or to be removed. For example, in order to pass a const argument to a function that expects a non-constant parameter:

// const_cast
#include <iostream>
using namespace std;

void print (char * str)
{
  cout << str << endl;
}

int main () {
  const char * c = "sample text";
  print ( const_cast<char *> (c) );
  return 0;
}
sample text

typeid

typeid allows to check the type of an expression:

typeid (expression)

This operator returns a reference to a constant object of type type_info that is defined in the standard header file <typeinfo>. This returned value can be compared with another one using operators == and != or can serve to obtain a null-terminated character sequence representing the data type or class name by using its name() member.

// typeid
#include <iostream>
#include <typeinfo>
using namespace std;

int main () {
  int * a,b;
  a=0; b=0;
  if (typeid(a) != typeid(b))
  {
    cout << "a and b are of different types:\n";
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
  }
  return 0;
}
a and b are of different types:
a is: int *
b is: int  

When typeid is applied to classes typeid uses the RTTI to keep track of the type of dynamic objects. When typeid is applied to an expression whose type is a polymorphic class, the result is the type of the most derived complete object:

// typeid, polymorphic class
#include <iostream>
#include <typeinfo>
#include <exception>
using namespace std;

class CBase { virtual void f(){} };
class CDerived : public CBase {};

int main () {
  try {
    CBase* a = new CBase;
    CBase* b = new CDerived;
    cout << "a is: " << typeid(a).name() << '\n';
    cout << "b is: " << typeid(b).name() << '\n';
    cout << "*a is: " << typeid(*a).name() << '\n';
    cout << "*b is: " << typeid(*b).name() << '\n';
  } catch (exception& e) { cout << "Exception: " << e.what() << endl; }
  return 0;
}
a is: class CBase *
b is: class CBase *
*a is: class CBase
*b is: class CDerived

Notice how the type that typeid considers for pointers is the pointer type itself (both a and b are of type class CBase *). However, when typeid is applied to objects (like *a and *btypeid yields their dynamic type (i.e. the type of their most derived complete object: 真實的類型,即使子類對象使用的是父類的指針,但返回的子類的信息).

If the type typeid evaluates is a pointer preceded by the dereference operator (*), and this pointer has a null value, typeid throws a bad_typeid exception.

posted on 2010-10-08 05:25 逛奔的蝸牛 閱讀(746) 評論(0)  編輯 收藏 引用 所屬分類: C/C++
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美久久久久久蜜桃| 久久综合色一综合色88| 国产视频久久久久| 欧美日韩一二三区| 欧美日本三级| 欧美日韩精品久久| 国产精品高潮呻吟视频| 国产精品入口麻豆原神| 国产偷国产偷精品高清尤物| 国产综合色精品一区二区三区| 国产婷婷色综合av蜜臀av| 在线视频成人| 99国产精品99久久久久久粉嫩 | 国产精品扒开腿爽爽爽视频| 欧美丝袜一区二区三区| 国产精品综合av一区二区国产馆| 国内精品亚洲| 一区二区三区成人精品| 久久国产精品第一页| 欧美国产视频日韩| 中文国产成人精品久久一| 久久精品99久久香蕉国产色戒 | 欧美一区二区三区在| 免费黄网站欧美| 国产精品久久二区| 亚洲国产精品小视频| 亚洲欧美日韩在线一区| 欧美 日韩 国产精品免费观看| 亚洲美女在线观看| 久久久精品国产一区二区三区| 欧美精品在线免费观看| 国产一区二区三区观看| 一区二区三区四区五区精品视频 | 日韩网站免费观看| 欧美在线免费一级片| 欧美日韩国语| 在线不卡视频| 亚洲欧美乱综合| 亚洲国产一区二区在线| 91久久精品国产91久久| 香港成人在线视频| 欧美日韩国产免费观看| 永久免费精品影视网站| 午夜综合激情| 在线免费观看日韩欧美| 久久综合狠狠综合久久综青草| 欧美日韩天天操| 亚洲欧洲一区| 久久在线免费视频| 亚洲欧美日韩综合aⅴ视频| 欧美片网站免费| 亚洲经典在线看| 欧美777四色影视在线| 欧美一区二区三区免费观看| 国产精品护士白丝一区av| 艳女tv在线观看国产一区| 欧美激情网站在线观看| 久久躁日日躁aaaaxxxx| 精品51国产黑色丝袜高跟鞋| 久久精品视频免费| 欧美亚洲一区| 国产欧美日韩免费看aⅴ视频| 亚洲免费观看高清完整版在线观看熊 | 亚洲精品国产无天堂网2021| 久久综合久久久| 欧美一级电影久久| 国产农村妇女毛片精品久久麻豆 | 欧美国产精品一区| 久久这里只有精品视频首页| 在线 亚洲欧美在线综合一区| 老司机精品视频一区二区三区| 欧美一区二区三区免费看| 国产一区二区三区在线观看网站| 久久久国产成人精品| 久久精品视频在线| 亚洲国产毛片完整版 | 午夜在线观看欧美| 国产日韩欧美三级| 久久亚洲私人国产精品va| 久久尤物电影视频在线观看| 99国产精品国产精品久久| 这里只有精品电影| 国产午夜精品美女毛片视频| 欧美.日韩.国产.一区.二区| 男人的天堂亚洲在线| 这里是久久伊人| 亚洲欧美日韩在线播放| 国产亚洲人成网站在线观看| 免费不卡亚洲欧美| 欧美伦理91i| 久久99在线观看| 美女福利精品视频| 亚洲线精品一区二区三区八戒| 亚洲在线播放电影| 1024国产精品| 一区二区三区视频在线观看| 黄色成人在线网站| 亚洲免费黄色| 国内精品视频在线观看| 日韩视频免费| 国产日韩在线视频| 欧美日本一区二区三区| 亚洲欧美日韩精品一区二区| 欧美中在线观看| 一区二区三欧美| 午夜影院日韩| 99天天综合性| 性色av一区二区三区红粉影视| 亚洲区欧美区| 欧美一区二区三区免费大片| 日韩一级不卡| 久久精品亚洲精品| 亚洲综合第一页| 蜜桃久久av| 久久精品一区二区三区中文字幕| 欧美成人综合一区| 久久久久久久波多野高潮日日| 欧美区高清在线| 免费毛片一区二区三区久久久| 国产精品视频yy9099| 亚洲精品国产欧美| 亚洲国产裸拍裸体视频在线观看乱了中文| 亚洲午夜精品在线| 一区二区高清视频| 模特精品在线| 亚洲第一页在线| 伊人成年综合电影网| 午夜精品久久久久久| 午夜精品福利视频| 欧美性色视频在线| 亚洲精品在线看| 亚洲精品资源| 欧美xx视频| 亚洲第一精品影视| 亚洲国产女人aaa毛片在线| 久久久国产精品一区二区中文| 午夜欧美大尺度福利影院在线看| 欧美日韩一二三四五区| 亚洲精品乱码久久久久久按摩观 | 一区二区三区.www| 亚洲图片欧美午夜| 欧美日韩在线一区二区| 亚洲国产婷婷综合在线精品| 亚洲国产日韩美| 免费h精品视频在线播放| 免费不卡在线视频| 亚洲国产一区二区三区青草影视| 老司机久久99久久精品播放免费 | 久久婷婷亚洲| 激情成人亚洲| 久久伊人一区二区| 亚洲成人在线网站| 亚洲国产欧美日韩精品| 久久精品国产一区二区三区免费看 | 亚洲欧洲三级电影| 99国产精品久久久久久久久久| 蜜桃av一区| 亚洲国产精品嫩草影院| 99精品久久免费看蜜臀剧情介绍| 欧美激情综合在线| 欧美美女操人视频| 亚洲东热激情| 亚洲日韩第九十九页| 欧美精品一区二区三区蜜臀| 日韩亚洲精品视频| 欧美一级电影久久| 一区在线电影| 欧美日韩91| 亚洲主播在线播放| 久久亚洲春色中文字幕久久久| 亚洲黄色天堂| 国产精品视频xxxx| 欧美~级网站不卡| 一区二区三区免费在线观看| 欧美在线精品免播放器视频| 亚洲高清视频一区二区| 欧美日韩少妇| 久久国产加勒比精品无码| 亚洲人成网站影音先锋播放| 亚洲一区影院| 黄网站免费久久| 欧美日韩一区二区在线观看| 欧美在线观看日本一区| 91久久精品久久国产性色也91 | 国产精品成人免费| 久久久一二三| 一区二区三区|亚洲午夜| 女主播福利一区| 久久99在线观看| 在线视频你懂得一区二区三区| 一区在线播放| 国产性天天综合网| 国产精品99免视看9| 免费在线成人av| 欧美影院视频| 亚洲午夜av在线| 亚洲经典视频在线观看| 美国十次成人| 久久狠狠亚洲综合| 亚洲欧美中文日韩v在线观看|