• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            PKU3121 Sum of Different Primes

            Posted on 2007-02-18 10:02 oyjpart 閱讀(1250) 評(píng)論(2)  編輯 收藏 引用

            Sum of Different Primes
            Time Limit:5000MS? Memory Limit:65536K
            Total Submit:362 Accepted:219

            Description

            A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.

            When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 18} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.

            Your job is to write a program that reports the number of such ways for the given n and k.

            Input

            The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.

            Output

            The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.

            Sample Input

            24 3 
            24 2 
            2 1 
            1 1 
            4 2 
            18 3 
            17 1 
            17 3 
            17 4 
            100 5 
            1000 10 
            1120 14 
            0 0

            Sample Output

            2 
            3 
            1 
            0 
            0 
            2 
            1 
            0 
            1 
            55 
            200102899 
            2079324314

            Source
            Japan 2006

            如何寫無重復(fù)的情況呢?
            剛開始的時(shí)候我寫的是按以前寫搜索的那種寫法 加了最大數(shù)的限制
            但是數(shù)組多了一維 后來想起來其實(shí)可以這樣寫 現(xiàn)在居然忘記了。。faint

            Solution
            //by oyjpArt
            int n, s; //全數(shù),階段
            int st[MAXN][MAXS];
            bool test[MAXN]; //這個(gè)是刪數(shù)法的規(guī)則
            int p[200];
            int np;

            void pre()
            {
            ?int i, j, k;
            ?memset(test, true, sizeof(test));
            ?memset(st, 0, sizeof(st));
            ?int np = 0;
            ?for(i=2; i<MAXN; i++)
            ??if(test[i])
            ??{
            ???p[np++] = i;
            ???for(j=i+i; j<MAXN; j+=i)
            ????test[j] = 0;
            ??}
            ?st[0][0] = 1;
            ?for(i=0; i<np; i++) //階段
            ??for(j=1120-p[i]; j>=0; j--)
            ???for(k = 14; k>=1; k--)
            ????st[j+p[i]][k] += st[j][k-1];
            }
            int main()
            {
            ?pre();
            ?while(scanf("%d%d", &n, &s), n>0)
            ?{
            ??printf("%d\n", st[n][s]);
            ?}
            ?return 0;
            }

            Feedback

            # re: PKU3121 Sum of Different Primes   回復(fù)  更多評(píng)論   

            2008-07-01 18:13 by ssadwll
            自己都沒交成功

            # re: PKU3121 Sum of Different Primes   回復(fù)  更多評(píng)論   

            2008-07-01 18:43 by oyjpart
            恩?

            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            久久天堂AV综合合色蜜桃网 | 久久精品9988| 99精品久久精品| 久久无码一区二区三区少妇 | 午夜精品久久久久久影视777 | 欧美色综合久久久久久| 国产偷久久久精品专区 | 久久久中文字幕日本| 久久久久99精品成人片直播| 久久综合九色综合久99| 狠狠色婷婷久久一区二区 | 久久精品成人免费网站| 欧美午夜精品久久久久久浪潮| 久久亚洲中文字幕精品有坂深雪 | 久久天天躁狠狠躁夜夜av浪潮 | 久久精品国产亚洲av日韩| A级毛片无码久久精品免费| 久久久久99精品成人片直播| 亚洲国产日韩综合久久精品| 国产精品成人99久久久久 | 亚洲精品久久久www| 久久免费高清视频| 999久久久免费精品国产| 久久伊人五月丁香狠狠色| 久久久久久极精品久久久 | 99久久免费国产精品热| 乱亲女H秽乱长久久久| 欧美一区二区三区久久综合| 久久这里只有精品首页| 久久青青草视频| 老男人久久青草av高清| 亚洲国产成人精品久久久国产成人一区二区三区综 | 99久久国产免费福利| 欧美亚洲国产精品久久蜜芽| 国产日产久久高清欧美一区| 久久99国产精品久久99| 亚洲国产精品人久久| 久久婷婷色综合一区二区| 欧美精品一区二区久久| 久久午夜免费视频| 嫩草伊人久久精品少妇AV|