• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            PKU1734 Sightseeing trip (CEOI99)

            Posted on 2007-05-28 23:41 oyjpart 閱讀(2375) 評論(3)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            很久沒寫結題報告了
            今天做Sightseeing trip 上來貼個
            Ural:1004

            Sightseeing trip
            Time Limit:1000MS  Memory Limit:65536K
            Total Submit:317 Accepted:133 Special Judged

            Description
            There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

            In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

            Input
            The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

            Output
            There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

            Sample Input

            5 7
            1 4 1
            1 3 300
            3 1 10
            1 2 16
            2 3 100
            2 5 15
            5 3 20
            

             

            Sample Output

            1 3 5 2
            

             

            點數(shù)是100個 題目意思是找一個最小權圈 以任意序輸出
            從圖論的角度上考慮 應該是任意選一條邊(枚舉) 然后刪除邊 再以一個點為原點求Dijkstra 找出最小權圈 o(M*N^2)的復雜度 一個更加好的算法是限定枚舉的點為圈內序號最大的點 這樣就避免了對一個圈的多次枚舉(參考程序3)
            如果直接搜就是任選一個點開始走回到原點則記錄長度 搜的時候必須要先對每個點的邊按照邊權進行排序 以備后面大量剪枝

            程序1

             1//Solution
             2//by oyjpArt
             3//Algorithm:Search
             4#include <vector>
             5#include <iostream>
             6#include <algorithm>
             7using namespace std;
             8
             9const int N = 101;
            10struct Node {int x, w; void set(int xx, int ww) {x =xx; w = ww; }};
            11vector<Node> adj[N];
            12int nv, ne, ans[N], na, S, rec[N];
            13bool chk[N];
            14int best;
            15
            16bool operator<(const Node& a, const Node& b) {
            17 return a.w < b.w;
            18}
            19
            20void search(int x, int sum, int depth, int father) {
            21 int i;
            22 if(x == S && chk[x]) {
            23  if(sum < best) {
            24   best = sum;  na = depth;
            25   for(i = 0; i < depth; i++) ans[i] = rec[i];
            26  }
            27  return;
            28 }
            29 rec[depth] = x;
            30 for(i = 0; i < adj[x].size(); ++i) if(adj[x][i].x != father) if(!chk[adj[x][i].x] || adj[x][i].x == S) {
            31  chk[adj[x][i].x] = 1;
            32  if(sum + adj[x][i].w < best) search(adj[x][i].x, sum + adj[x][i].w, depth+1, x);
            33  chk[adj[x][i].x] = 0;
            34 }
            35
            36
            37int main() {
            38 scanf("%d %d"&nv, &ne);
            39 int i, u, v, w;
            40 Node now;
            41 for(i = 0; i < ne; i++) {
            42  scanf("%d %d %d"&u, &v, &w);
            43  --u; --v;
            44  now.set(v, w);
            45  adj[u].push_back(now);
            46  now.x = u;
            47  adj[v].push_back(now);
            48 }
            49 for(i = 0; i < nv; ++i) 
            50  sort(adj[i].begin(), adj[i].end());
            51 
            52 best = 123456789;
            53 for(i = 0; i < nv; ++i) {
            54  memset(chk, 0, nv * sizeof(bool));
            55  S = i;
            56  search(i, 00-1);
            57 }
            58
            59 if(best == 123456789) { printf("No solution.\n"); return 0; }
            60 printf("%d", ans[0]+1);
            61 for(i = 1; i < na; ++i) printf(" %d", ans[i]+1); putchar('\n');
            62
            63 return 0;
            64}
            65
            66



            程序2

             1//Solution
             2//by oyjpArt
             3//Algorithm : Enumerate + Dijkstra
             4#include <stdio.h>
             5#include <string.h>
             6
             7const int N = 101, M = 20001, MAXINT = 2000000000;
             8int ne, nv;
             9struct E {
            10 int x, w; E* next;
            11 void set(int xx, int ww, E* nn) {x = xx; w = ww; next = nn;}
            12}e[M], * head[N];
            13int best, dist[N], q[N], ans[N], pre[N], na;
            14bool chk[N];
            15
            16void Dijk(int st, int endint ow) {
            17 memset(chk, 0, sizeof(chk));
            18 memset(dist, -1, sizeof(dist));
            19 int qe = 1, qs = 0, i;
            20 E * p;
            21 for(i = 0; i < nv; ++i) if(i != st) {
            22  for(p = head[st]; p != NULL; p = p->next) {
            23   if(p->== i && p->> 0 && (dist[i] == -1 || dist[i] > p->w ) ) 
            24    dist[i] = p->w;
            25  }
            26  if(dist[i] == -1) dist[i] = MAXINT;
            27 }
            28 q[0= st;
            29 dist[st] = 0;
            30 chk[st] = 1;
            31 for(i = 0; i < nv; ++i) pre[i] = st;
            32 pre[st] = -1;
            33 while(qs < qe) {
            34  int cur = q[qs++];
            35  chk[cur] = 1;
            36  if(ow + dist[cur] >= best) return;
            37  if(cur == end) {
            38   if(dist[end+ ow < best) {
            39    na = 0;
            40    for(i = cur; i != -1; i = pre[i]) ans[na++= i;
            41    best = dist[end+ ow;
            42   }
            43   return;
            44  }
            45  int _min = MAXINT, mini = -1;
            46  for(i = 0; i < nv; i++if(!chk[i]) {
            47   if(dist[i] < _min) {
            48    _min = dist[i];
            49    mini = i;
            50   }
            51  }
            52  if(mini == -1) return;
            53  q[qe++= mini;
            54  for(i = 0; i < nv; ++i) if(!chk[i]) {
            55   for(p = head[mini]; p != NULL; p = p->nextif(p->== i)  break;
            56   if(p == NULL) continue;
            57   if(p->> 0 && p->+ dist[mini] < dist[i]) {
            58    dist[i] = p->+ dist[mini];
            59    pre[i] = mini;
            60   }
            61  }
            62 }
            63}
            64
            65int main() {
            66 scanf("%d %d"&nv, &ne);
            67 memset(head, NULL, nv * sizeof(E*));
            68 int i, u, v, w;
            69 for(i = 0; i < ne; ++i) {
            70  scanf("%d %d %d"&u, &v, &w);
            71  --u; --v;
            72  e[2*i].set(u, w, head[v]);
            73  head[v] = &e[2*i];
            74  e[2*i+1].set(v, w, head[u]);
            75  head[u] = &e[2*i+1];
            76 }
            77 E * p, * q;
            78 best = MAXINT;
            79 for(i = 0; i < nv; ++i) {
            80  for(p = head[i]; p != NULL; p = p->next) {
            81   int w = p->w;
            82   int j = p->x;
            83   for(q = head[i]; q != NULL; q = q->nextif(q->== j) q->= -q->w;
            84   for(q = head[j]; q != NULL; q = q->nextif(q->== i) q->= -q->w;
            85   Dijk(i, j, w);
            86   for(q = head[i]; q != NULL; q = q->nextif(q->== j) q->= -q->w;
            87   for(q = head[j]; q != NULL; q = q->nextif(q->== i) q->= -q->w;
            88  }
            89 }
            90 if(best == MAXINT) printf("No solution.\n");
            91 else {
            92  printf("%d", ans[0+ 1);
            93  for(i = 1; i < na; ++i) printf(" %d", ans[i] + 1); putchar('\n');
            94 }
            95 return 0;
            96}
            97//唉 不用vector代碼量增大好多。。暈倒
            98

            程序3:
            經wywcgs大牛提醒 改寫成了Floyd程序 時間銳減
             1#include <stdio.h>
             2#include <string.h>
             3
             4const int N = 101;
             5const int MAXINT = 123456789;
             6int ne, nv;
             7int adj[N][N];
             8int pre[N][N];
             9int conn[N][N];
            10int na, ans[N];
            11int best;
            12
            13void floyd() {
            14    int i, j, k, tmp, p;
            15    for(k = 0; k < nv; ++k) {
            16        for(i = 0; i < k; ++i) {
            17            for(j = 0; j < k; ++j) if(conn[i][k] && conn[k][j] && j != i) {
            18                if( (tmp = adj[i][j] + conn[k][i] + conn[j][k]) < best) {
            19                    best = tmp;
            20                    na = 1; ans[0= k; p = i;
            21                    while(p != -1) {
            22                        ans[na++= p;
            23                        p = pre[p][j];
            24                    }
            25                }
            26            } 
            27        }
            28        for(i = 0; i < nv; ++i) 
            29            for(j = 0; j < nv; ++j) {
            30                if(adj[i][j] > adj[i][k] + adj[k][j]) {
            31                    adj[i][j] = adj[i][k] + adj[k][j];
            32                    pre[i][j] = pre[i][k];
            33                }
            34            }
            35    }
            36}
            37
            38int main() {
            39    int i, j, u, v, w;
            40    memset(pre, -1, sizeof(pre));
            41    scanf("%d %d"&nv, &ne);
            42    for(i = 0; i < nv; ++i) {
            43        for(j = i+1; j < nv; ++j) 
            44            adj[i][j] = adj[j][i] = MAXINT;
            45        adj[i][i] = 0;
            46    }
            47    for(i = 0; i < ne; ++i) {
            48        scanf("%d %d %d"&u, &v, &w);
            49        --u; --v;
            50        if(w < adj[u][v])     
            51            conn[u][v] = conn[v][u] = adj[u][v] = adj[v][u] = w;
            52        pre[u][v] = v, pre[v][u] = u;
            53    }
            54    best = MAXINT;
            55    floyd();
            56    if(best == MAXINT) printf("No solution.\n");
            57    else {
            58        for(i = 0; i < na; ++i) {
            59            printf("%d", ans[i] + 1);
            60            if(i != na-1) putchar(' ');
            61            else putchar('\n');
            62        }
            63    }
            64
            65    return 0;
            66}
            67

            Feedback

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2007-05-30 22:08 by wywcgs
            呃……這道題有O(V^3)做法……一次floyd或者V次dijkstra……
            你可以再想想,總之不是很難……

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2007-07-28 17:27 by dingyihamigua
            大牛人啊!!
            很經典的東西!!
            謝謝了哈!
            辛苦了!!

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2011-11-10 15:58 by wuyiqi
            我感覺如果用搜索的話好像排序與不排序是一樣的吧,因為一個點是等可能的搜向鄰邊的,排序改變不了什么,就算先搜到最短的鄰邊,隨后還是有可能越走越遠
            亚洲精品无码久久久久sm| 久久久久久精品无码人妻| 国产精品一久久香蕉国产线看观看| 国产成人无码久久久精品一| 久久国产免费观看精品3| 中文字幕无码久久久| 99久久成人国产精品免费 | 国产精品久久久久久久| 国产高清美女一级a毛片久久w| 久久亚洲AV成人无码电影| 亚洲国产精品嫩草影院久久| 国内高清久久久久久| 久久久国产打桩机| 亚洲午夜久久久精品影院| 久久久久久久亚洲Av无码| 久久99精品久久久久久不卡| 国产精品成人99久久久久91gav| 久久精品亚洲精品国产欧美| 久久精品无码免费不卡| 色综合久久中文字幕无码 | 麻豆AV一区二区三区久久| 亚洲一区中文字幕久久| 人妻精品久久无码区| 久久精品国产男包| 亚洲国产天堂久久综合| 久久97久久97精品免视看| 久久精品国产只有精品2020| 国产精品狼人久久久久影院| 久久久久女人精品毛片| 亚洲人成网亚洲欧洲无码久久| 久久久久亚洲av毛片大| 久久天天躁夜夜躁狠狠躁2022 | 久久国产成人精品麻豆| 日韩AV无码久久一区二区| 久久久久久久久久久精品尤物| 亚洲精品无码久久久| 亚洲午夜福利精品久久| 久久久久99这里有精品10| 久久精品无码专区免费青青| 中文字幕久久波多野结衣av| 伊人久久久AV老熟妇色|