• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            PKU1734 Sightseeing trip (CEOI99)

            Posted on 2007-05-28 23:41 oyjpart 閱讀(2364) 評論(3)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            很久沒寫結題報告了
            今天做Sightseeing trip 上來貼個
            Ural:1004

            Sightseeing trip
            Time Limit:1000MS  Memory Limit:65536K
            Total Submit:317 Accepted:133 Special Judged

            Description
            There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

            In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

            Input
            The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

            Output
            There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

            Sample Input

            5 7
            1 4 1
            1 3 300
            3 1 10
            1 2 16
            2 3 100
            2 5 15
            5 3 20
            

             

            Sample Output

            1 3 5 2
            

             

            點數是100個 題目意思是找一個最小權圈 以任意序輸出
            從圖論的角度上考慮 應該是任意選一條邊(枚舉) 然后刪除邊 再以一個點為原點求Dijkstra 找出最小權圈 o(M*N^2)的復雜度 一個更加好的算法是限定枚舉的點為圈內序號最大的點 這樣就避免了對一個圈的多次枚舉(參考程序3)
            如果直接搜就是任選一個點開始走回到原點則記錄長度 搜的時候必須要先對每個點的邊按照邊權進行排序 以備后面大量剪枝

            程序1

             1//Solution
             2//by oyjpArt
             3//Algorithm:Search
             4#include <vector>
             5#include <iostream>
             6#include <algorithm>
             7using namespace std;
             8
             9const int N = 101;
            10struct Node {int x, w; void set(int xx, int ww) {x =xx; w = ww; }};
            11vector<Node> adj[N];
            12int nv, ne, ans[N], na, S, rec[N];
            13bool chk[N];
            14int best;
            15
            16bool operator<(const Node& a, const Node& b) {
            17 return a.w < b.w;
            18}
            19
            20void search(int x, int sum, int depth, int father) {
            21 int i;
            22 if(x == S && chk[x]) {
            23  if(sum < best) {
            24   best = sum;  na = depth;
            25   for(i = 0; i < depth; i++) ans[i] = rec[i];
            26  }
            27  return;
            28 }
            29 rec[depth] = x;
            30 for(i = 0; i < adj[x].size(); ++i) if(adj[x][i].x != father) if(!chk[adj[x][i].x] || adj[x][i].x == S) {
            31  chk[adj[x][i].x] = 1;
            32  if(sum + adj[x][i].w < best) search(adj[x][i].x, sum + adj[x][i].w, depth+1, x);
            33  chk[adj[x][i].x] = 0;
            34 }
            35
            36
            37int main() {
            38 scanf("%d %d"&nv, &ne);
            39 int i, u, v, w;
            40 Node now;
            41 for(i = 0; i < ne; i++) {
            42  scanf("%d %d %d"&u, &v, &w);
            43  --u; --v;
            44  now.set(v, w);
            45  adj[u].push_back(now);
            46  now.x = u;
            47  adj[v].push_back(now);
            48 }
            49 for(i = 0; i < nv; ++i) 
            50  sort(adj[i].begin(), adj[i].end());
            51 
            52 best = 123456789;
            53 for(i = 0; i < nv; ++i) {
            54  memset(chk, 0, nv * sizeof(bool));
            55  S = i;
            56  search(i, 00-1);
            57 }
            58
            59 if(best == 123456789) { printf("No solution.\n"); return 0; }
            60 printf("%d", ans[0]+1);
            61 for(i = 1; i < na; ++i) printf(" %d", ans[i]+1); putchar('\n');
            62
            63 return 0;
            64}
            65
            66



            程序2

             1//Solution
             2//by oyjpArt
             3//Algorithm : Enumerate + Dijkstra
             4#include <stdio.h>
             5#include <string.h>
             6
             7const int N = 101, M = 20001, MAXINT = 2000000000;
             8int ne, nv;
             9struct E {
            10 int x, w; E* next;
            11 void set(int xx, int ww, E* nn) {x = xx; w = ww; next = nn;}
            12}e[M], * head[N];
            13int best, dist[N], q[N], ans[N], pre[N], na;
            14bool chk[N];
            15
            16void Dijk(int st, int endint ow) {
            17 memset(chk, 0, sizeof(chk));
            18 memset(dist, -1, sizeof(dist));
            19 int qe = 1, qs = 0, i;
            20 E * p;
            21 for(i = 0; i < nv; ++i) if(i != st) {
            22  for(p = head[st]; p != NULL; p = p->next) {
            23   if(p->== i && p->> 0 && (dist[i] == -1 || dist[i] > p->w ) ) 
            24    dist[i] = p->w;
            25  }
            26  if(dist[i] == -1) dist[i] = MAXINT;
            27 }
            28 q[0= st;
            29 dist[st] = 0;
            30 chk[st] = 1;
            31 for(i = 0; i < nv; ++i) pre[i] = st;
            32 pre[st] = -1;
            33 while(qs < qe) {
            34  int cur = q[qs++];
            35  chk[cur] = 1;
            36  if(ow + dist[cur] >= best) return;
            37  if(cur == end) {
            38   if(dist[end+ ow < best) {
            39    na = 0;
            40    for(i = cur; i != -1; i = pre[i]) ans[na++= i;
            41    best = dist[end+ ow;
            42   }
            43   return;
            44  }
            45  int _min = MAXINT, mini = -1;
            46  for(i = 0; i < nv; i++if(!chk[i]) {
            47   if(dist[i] < _min) {
            48    _min = dist[i];
            49    mini = i;
            50   }
            51  }
            52  if(mini == -1) return;
            53  q[qe++= mini;
            54  for(i = 0; i < nv; ++i) if(!chk[i]) {
            55   for(p = head[mini]; p != NULL; p = p->nextif(p->== i)  break;
            56   if(p == NULL) continue;
            57   if(p->> 0 && p->+ dist[mini] < dist[i]) {
            58    dist[i] = p->+ dist[mini];
            59    pre[i] = mini;
            60   }
            61  }
            62 }
            63}
            64
            65int main() {
            66 scanf("%d %d"&nv, &ne);
            67 memset(head, NULL, nv * sizeof(E*));
            68 int i, u, v, w;
            69 for(i = 0; i < ne; ++i) {
            70  scanf("%d %d %d"&u, &v, &w);
            71  --u; --v;
            72  e[2*i].set(u, w, head[v]);
            73  head[v] = &e[2*i];
            74  e[2*i+1].set(v, w, head[u]);
            75  head[u] = &e[2*i+1];
            76 }
            77 E * p, * q;
            78 best = MAXINT;
            79 for(i = 0; i < nv; ++i) {
            80  for(p = head[i]; p != NULL; p = p->next) {
            81   int w = p->w;
            82   int j = p->x;
            83   for(q = head[i]; q != NULL; q = q->nextif(q->== j) q->= -q->w;
            84   for(q = head[j]; q != NULL; q = q->nextif(q->== i) q->= -q->w;
            85   Dijk(i, j, w);
            86   for(q = head[i]; q != NULL; q = q->nextif(q->== j) q->= -q->w;
            87   for(q = head[j]; q != NULL; q = q->nextif(q->== i) q->= -q->w;
            88  }
            89 }
            90 if(best == MAXINT) printf("No solution.\n");
            91 else {
            92  printf("%d", ans[0+ 1);
            93  for(i = 1; i < na; ++i) printf(" %d", ans[i] + 1); putchar('\n');
            94 }
            95 return 0;
            96}
            97//唉 不用vector代碼量增大好多。。暈倒
            98

            程序3:
            經wywcgs大牛提醒 改寫成了Floyd程序 時間銳減
             1#include <stdio.h>
             2#include <string.h>
             3
             4const int N = 101;
             5const int MAXINT = 123456789;
             6int ne, nv;
             7int adj[N][N];
             8int pre[N][N];
             9int conn[N][N];
            10int na, ans[N];
            11int best;
            12
            13void floyd() {
            14    int i, j, k, tmp, p;
            15    for(k = 0; k < nv; ++k) {
            16        for(i = 0; i < k; ++i) {
            17            for(j = 0; j < k; ++j) if(conn[i][k] && conn[k][j] && j != i) {
            18                if( (tmp = adj[i][j] + conn[k][i] + conn[j][k]) < best) {
            19                    best = tmp;
            20                    na = 1; ans[0= k; p = i;
            21                    while(p != -1) {
            22                        ans[na++= p;
            23                        p = pre[p][j];
            24                    }
            25                }
            26            } 
            27        }
            28        for(i = 0; i < nv; ++i) 
            29            for(j = 0; j < nv; ++j) {
            30                if(adj[i][j] > adj[i][k] + adj[k][j]) {
            31                    adj[i][j] = adj[i][k] + adj[k][j];
            32                    pre[i][j] = pre[i][k];
            33                }
            34            }
            35    }
            36}
            37
            38int main() {
            39    int i, j, u, v, w;
            40    memset(pre, -1, sizeof(pre));
            41    scanf("%d %d"&nv, &ne);
            42    for(i = 0; i < nv; ++i) {
            43        for(j = i+1; j < nv; ++j) 
            44            adj[i][j] = adj[j][i] = MAXINT;
            45        adj[i][i] = 0;
            46    }
            47    for(i = 0; i < ne; ++i) {
            48        scanf("%d %d %d"&u, &v, &w);
            49        --u; --v;
            50        if(w < adj[u][v])     
            51            conn[u][v] = conn[v][u] = adj[u][v] = adj[v][u] = w;
            52        pre[u][v] = v, pre[v][u] = u;
            53    }
            54    best = MAXINT;
            55    floyd();
            56    if(best == MAXINT) printf("No solution.\n");
            57    else {
            58        for(i = 0; i < na; ++i) {
            59            printf("%d", ans[i] + 1);
            60            if(i != na-1) putchar(' ');
            61            else putchar('\n');
            62        }
            63    }
            64
            65    return 0;
            66}
            67

            Feedback

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2007-05-30 22:08 by wywcgs
            呃……這道題有O(V^3)做法……一次floyd或者V次dijkstra……
            你可以再想想,總之不是很難……

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2007-07-28 17:27 by dingyihamigua
            大牛人啊!!
            很經典的東西!!
            謝謝了哈!
            辛苦了!!

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2011-11-10 15:58 by wuyiqi
            我感覺如果用搜索的話好像排序與不排序是一樣的吧,因為一個點是等可能的搜向鄰邊的,排序改變不了什么,就算先搜到最短的鄰邊,隨后還是有可能越走越遠
            久久亚洲私人国产精品vA| 久久久久无码专区亚洲av| 国产精品久久久久久五月尺| 伊人久久精品影院| 99蜜桃臀久久久欧美精品网站 | 亚洲精品乱码久久久久久蜜桃| 久久91这里精品国产2020| 日本欧美国产精品第一页久久| 伊人色综合久久天天人守人婷| 久久青青草原精品国产| 色综合久久久久网| 香蕉99久久国产综合精品宅男自 | 无码精品久久久久久人妻中字| 2021少妇久久久久久久久久| 97久久精品人人澡人人爽| 伊人 久久 精品| 久久99精品综合国产首页| 久久综合九色综合欧美就去吻| 亚洲αv久久久噜噜噜噜噜| 亚洲国产精品久久久久| 国产成人久久精品一区二区三区 | 久久久精品国产免大香伊| 麻豆精品久久精品色综合| 区久久AAA片69亚洲| 99久久国产主播综合精品| 亚洲国产另类久久久精品| 久久精品亚洲欧美日韩久久| 久久超碰97人人做人人爱| 中文字幕精品久久| 久久国产精品一区二区| 亚洲AV成人无码久久精品老人| 久久无码人妻精品一区二区三区 | 久久人人爽人人爽人人AV东京热| 久久人妻少妇嫩草AV蜜桃| 国产福利电影一区二区三区久久老子无码午夜伦不 | 久久久国产打桩机| 久久久久久国产a免费观看不卡 | 久久精品午夜一区二区福利| 久久精品国产乱子伦| 亚洲午夜福利精品久久| 伊人久久大香线蕉无码麻豆|