• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            PKU3121 Sum of Different Primes

            Posted on 2007-02-18 10:02 oyjpart 閱讀(1241) 評(píng)論(2)  編輯 收藏 引用

            Sum of Different Primes
            Time Limit:5000MS? Memory Limit:65536K
            Total Submit:362 Accepted:219

            Description

            A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.

            When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 18} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.

            Your job is to write a program that reports the number of such ways for the given n and k.

            Input

            The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.

            Output

            The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.

            Sample Input

            24 3 
            24 2 
            2 1 
            1 1 
            4 2 
            18 3 
            17 1 
            17 3 
            17 4 
            100 5 
            1000 10 
            1120 14 
            0 0

            Sample Output

            2 
            3 
            1 
            0 
            0 
            2 
            1 
            0 
            1 
            55 
            200102899 
            2079324314

            Source
            Japan 2006

            如何寫(xiě)無(wú)重復(fù)的情況呢?
            剛開(kāi)始的時(shí)候我寫(xiě)的是按以前寫(xiě)搜索的那種寫(xiě)法 加了最大數(shù)的限制
            但是數(shù)組多了一維 后來(lái)想起來(lái)其實(shí)可以這樣寫(xiě) 現(xiàn)在居然忘記了。。faint

            Solution
            //by oyjpArt
            int n, s; //全數(shù),階段
            int st[MAXN][MAXS];
            bool test[MAXN]; //這個(gè)是刪數(shù)法的規(guī)則
            int p[200];
            int np;

            void pre()
            {
            ?int i, j, k;
            ?memset(test, true, sizeof(test));
            ?memset(st, 0, sizeof(st));
            ?int np = 0;
            ?for(i=2; i<MAXN; i++)
            ??if(test[i])
            ??{
            ???p[np++] = i;
            ???for(j=i+i; j<MAXN; j+=i)
            ????test[j] = 0;
            ??}
            ?st[0][0] = 1;
            ?for(i=0; i<np; i++) //階段
            ??for(j=1120-p[i]; j>=0; j--)
            ???for(k = 14; k>=1; k--)
            ????st[j+p[i]][k] += st[j][k-1];
            }
            int main()
            {
            ?pre();
            ?while(scanf("%d%d", &n, &s), n>0)
            ?{
            ??printf("%d\n", st[n][s]);
            ?}
            ?return 0;
            }

            Feedback

            # re: PKU3121 Sum of Different Primes   回復(fù)  更多評(píng)論   

            2008-07-01 18:13 by ssadwll
            自己都沒(méi)交成功

            # re: PKU3121 Sum of Different Primes   回復(fù)  更多評(píng)論   

            2008-07-01 18:43 by oyjpart
            恩?

            只有注冊(cè)用戶(hù)登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問(wèn)   Chat2DB   管理


            国产婷婷成人久久Av免费高清| 国产L精品国产亚洲区久久| 亚洲日本va午夜中文字幕久久| 久久香综合精品久久伊人| 精品久久人妻av中文字幕| 久久精品国产一区二区| 亚洲国产精品成人久久| 久久精品亚洲乱码伦伦中文| 中文国产成人精品久久不卡| 久久精品中文騷妇女内射| 久久WWW免费人成—看片| 久久亚洲精品中文字幕| 老司机午夜网站国内精品久久久久久久久 | 久久国产视频网| 久久免费的精品国产V∧| 欧美久久久久久精选9999| 精品无码久久久久久久久久| 久久这里的只有是精品23| 99久久成人18免费网站| 久久久久亚洲精品天堂| 久久久久久曰本AV免费免费| 久久精品成人一区二区三区| 国产91色综合久久免费分享| 国内精品九九久久精品| 久久天天躁狠狠躁夜夜av浪潮 | 狠狠88综合久久久久综合网| 伊人久久五月天| 久久国产香蕉一区精品| 久久精品国产91久久综合麻豆自制| 久久婷婷五月综合国产尤物app| 99久久www免费人成精品| 99久久婷婷免费国产综合精品| 日韩人妻无码一区二区三区久久 | 国产精品一区二区久久精品无码 | 欧美va久久久噜噜噜久久| 亚洲精品国精品久久99热| 久久成人18免费网站| 精品无码久久久久久久久久| 久久99精品国产麻豆蜜芽| 久久久久国产精品三级网| 中文字幕精品无码久久久久久3D日动漫 |