• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            SRM401 550 PTS ParticleCollision

            Posted on 2008-05-07 02:32 oyjpart 閱讀(2216) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽

            Problem Statement

                

            Particles (which can be considered points in 3D-space for the purposes of the problem) can move in an electro-magnetic field. If a particle is charged, its trajectory can be described as spiral, and if it is uncharged, it is just a straight line. Given two particles (one charged and one uncharged) it should be determined whether they can possibly collide or not. Two particles can possibly collide if and only if their trajectories intersect.

            Some steps have already been made by the physicist to simplify the problem, so the coordinates of the charged particle are represented as follows:

            x1 = cos(PI * t)

            y1 = sin(PI * t)

            z1 = t

            and for the uncharged particle:

            x2 = vx * t + x0

            y2 = vy * t + y0

            z2 = vz * t + z0

            Here t is a parameter which can be chosen arbitrarily and independently for both trajectories.

            Your method will be given 6 integers - vx, vy, vz, x0, y0 and z0, describing the trajectory of the uncharged particle. It should determine whether the two given trajectories intersect or not. If they do, it should return a vector <double> containing exactly 3 elements x, y and z - the coordinates of the point where a collision can happen. If there is more than one such point, it should return a vector <double> containing exactly three zeroes. If collision of the two particles is impossible it should return an empty vector <double>.

            Definition

                
            Class: ParticleCollision
            Method: collision
            Parameters: int, int, int, int, int, int
            Returns: vector <double>
            Method signature: vector <double> collision(int vx, int vy, int vz, int x0, int y0, int z0)
            (be sure your method is public)
                

            Notes

            - PI can be considered equal to 3.14159265358979323846.
            - All return values with either an absolute or relative error of less than 1.0E-9 are considered correct.

            Constraints

            - vx, vy and vz will each be between -10 and 10, inclusive.
            - x0, y0 and z0 will each be between -10 and 10, inclusive.

            Examples

            0)
                
            0
            0
            0
            0
            0
            0
            Returns: { }
            The second trajectory is a single point (0, 0, 0), which doesn't lie on the first trajectory.
            1)
                
            2
            4
            1
            -1
            -1
            0
            Returns: {0.0, 1.0, 0.5 }
            There is a single intersection point with coordinates (0, 1, 0.5).
            2)
                
            4
            4
            2
            5
            4
            0
            Returns: {0.0, 0.0, 0.0 }
            There are two intersection points.
            3)
                
            0
            0
            1
            1
            0
            0
            Returns: {0.0, 0.0, 0.0 }
            There are infinitely many intersection points.

            This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.


            要做這道題,要注意很多問題:
            1.看清題,題目中說了t是independent
            2.解一元二次方程要會吧!系數A,B,C的判定不要漏掉
            3.特殊情況下A=B=C什么時候有解考慮清楚

            這樣你就可以過題了!!!

            #pragma warning ( disable : 4786 )

            #include <vector>
            #include <list>
            #include <map>
            #include <set>
            #include <deque>
            #include <stack>
            #include <bitset>
            #include <queue>
            #include <algorithm>
            #include <functional>
            #include <numeric>
            #include <utility>
            #include <sstream>
            #include <iostream>
            #include <iomanip>
            #include <cstdio>
            #include <cmath>
            #include <cstdlib>
            #include <ctime>

            using namespace std;

            const double PI = acos(-1.0);

            #define sz(x) ((int)(x).size())
            #define Max(a,b) ((a)>(b)?(a):(b))
            #define Min(a,b) ((a)<(b)?(a):(b))
            #define MAXINT 1000000000
            #define EPS 1e-8
            #define FOR(a,b,c) for(a=(b);(a)<(c);++(a))
            #define REP(a,b) FOR(a,0,b)
            typedef vector<int> VI;

            inline int dblcmp(double a, double b) {
                if(fabs(a-b) < EPS) return 0;
                return a < b ? -1 : 1;
            }

            //typedef long long LL;

            /*
            cos(PI * t1)=vx * t2 + x0
            sin(PI * t1)=vy * t2 + y0
            t1=vz*t2+z0
            */


            class ParticleCollision
            {
            public:
                int vx, vy, vz, x0, y0, z0;

                bool check(double t2) {
                    double x2 = vx * t2 + x0;
                    double y2 = vy * t2 + y0;
                    double t1 = vz * t2 + z0;

                    if(dblcmp(cos(PI * t1), vx * t2 + x0)==0
                        && dblcmp(sin(PI * t1),vy * t2 + y0)==0
                        && dblcmp(t1,vz*t2+z0)==0)
                        return true;
                    return false;

                }
                vector <double> collision(int _vx, int _vy, int _vz, int _x0, int _y0, int _z0)
                {
                    vz=1;
                    vx = _vx;
                    vy = _vy;
                    vz = _vz;
                    x0 = _x0;
                    y0 = _y0;
                    z0 = _z0;
                    vector<double> mul(3, 0.0);
                    vector<double> empty;
                    int i, j;
                    double a = vx*vx + vy*vy;
                    double b = 2 * vx * x0 + 2 * vy * y0;
                    double c = x0 * x0 + y0 * y0 - 1;
                //    printf("a = %lf b = %lf c = %lf\n", a, b, c);
                    double det = b*b-4 * a * c;
                    if(dblcmp(a, 0.0) == 0) {
                        if(dblcmp(b, 0.0) == 0) {
                            if(dblcmp(c, 0.0) == 0) {
                                if(dblcmp(vz, 0.0) == 0) {
                                    if(dblcmp(x0, cos(PI * z0)) == 0
                                        && dblcmp(y0, sin(PI * z0)) == 0) {
                                        vector<double> ret;
                                        ret.push_back(x0);
                                        ret.push_back(y0);
                                        ret.push_back(z0);
                                        return ret;
                                    }
                                }
                                else return mul;
                            }
                            return empty;
                        }
                        double t = -c / b;
                        if(check(t)) {
                            vector<double> ret;
                            ret.push_back(vx * t + x0);
                            ret.push_back(vy * t + y0);
                            ret.push_back(vz * t + z0);
                            return ret;
                        }
                        return empty;
                    }
                //    printf("det = %lf\n", det);
                    int x = dblcmp(det, 0);
                    if(x == 1) {
                        int cnt = 0;
                        vector<double> ret;
                        for(i = 0; i < 2; ++i) {
                            double t;
                            if(i == 0) t = (-b - sqrt(det)) / 2 / a;
                            if(i == 1) t = (-b + sqrt(det)) / 2 / a;
                            
                            if(check(t)) {
                                ret.push_back(vx * t + x0);
                                ret.push_back(vy * t + y0);
                                ret.push_back(vz * t + z0);
                                cnt++;
                            }
                        }
                        if(cnt == 0) return empty;
                        else if(cnt == 1) return ret;
                        else return mul;
                    }
                    else if( x== -1) return empty;
                    else {
                        double t = (-b + sqrt(det)) / 2 / a;
                        if(check(t)) {
                            vector<double> ret;
                            ret.push_back(vx * t + x0);
                            ret.push_back(vy * t + y0);
                            ret.push_back(vz * t + z0);
                            return ret;
                        }
                        return empty;
                    }
                }
               
             
            };



            // Powered by FileEdit
            // Powered by TZTester 1.01 [25-Feb-2003]
            // Powered by CodeProcessor
             
            97r久久精品国产99国产精| 69久久夜色精品国产69| 欧美亚洲另类久久综合婷婷 | 老男人久久青草av高清| 潮喷大喷水系列无码久久精品| 国产精品一区二区久久国产| 久久九色综合九色99伊人| 伊人久久大香线蕉综合影院首页| 97精品国产91久久久久久| 亚洲国产日韩欧美久久| 国内精品人妻无码久久久影院| 久久久精品久久久久久 | 久久国产精品免费一区二区三区| 亚洲精品美女久久久久99| 91麻豆精品国产91久久久久久| 97久久国产综合精品女不卡 | 欧美午夜A∨大片久久 | 国产午夜福利精品久久2021 | 久久激情亚洲精品无码?V| 99久久精品国产免看国产一区| 亚洲欧洲久久久精品| 成人a毛片久久免费播放| 国产高潮国产高潮久久久| 久久综合久久美利坚合众国| 一本综合久久国产二区| 久久久久无码精品| 久久精品免费一区二区三区| 日产精品99久久久久久| 久久伊人五月丁香狠狠色| 久久91精品国产91久| 无码人妻久久一区二区三区蜜桃| 国产高潮久久免费观看| 亚洲国产成人久久精品动漫| 久久精品国产久精国产思思| 囯产精品久久久久久久久蜜桃| 久久青青草原精品国产不卡| 久久精品国产半推半就| 国产欧美久久一区二区| 99久久成人国产精品免费| MM131亚洲国产美女久久| 国产午夜精品久久久久免费视|