• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            SRM401 550 PTS ParticleCollision

            Posted on 2008-05-07 02:32 oyjpart 閱讀(2219) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽

            Problem Statement

                

            Particles (which can be considered points in 3D-space for the purposes of the problem) can move in an electro-magnetic field. If a particle is charged, its trajectory can be described as spiral, and if it is uncharged, it is just a straight line. Given two particles (one charged and one uncharged) it should be determined whether they can possibly collide or not. Two particles can possibly collide if and only if their trajectories intersect.

            Some steps have already been made by the physicist to simplify the problem, so the coordinates of the charged particle are represented as follows:

            x1 = cos(PI * t)

            y1 = sin(PI * t)

            z1 = t

            and for the uncharged particle:

            x2 = vx * t + x0

            y2 = vy * t + y0

            z2 = vz * t + z0

            Here t is a parameter which can be chosen arbitrarily and independently for both trajectories.

            Your method will be given 6 integers - vx, vy, vz, x0, y0 and z0, describing the trajectory of the uncharged particle. It should determine whether the two given trajectories intersect or not. If they do, it should return a vector <double> containing exactly 3 elements x, y and z - the coordinates of the point where a collision can happen. If there is more than one such point, it should return a vector <double> containing exactly three zeroes. If collision of the two particles is impossible it should return an empty vector <double>.

            Definition

                
            Class: ParticleCollision
            Method: collision
            Parameters: int, int, int, int, int, int
            Returns: vector <double>
            Method signature: vector <double> collision(int vx, int vy, int vz, int x0, int y0, int z0)
            (be sure your method is public)
                

            Notes

            - PI can be considered equal to 3.14159265358979323846.
            - All return values with either an absolute or relative error of less than 1.0E-9 are considered correct.

            Constraints

            - vx, vy and vz will each be between -10 and 10, inclusive.
            - x0, y0 and z0 will each be between -10 and 10, inclusive.

            Examples

            0)
                
            0
            0
            0
            0
            0
            0
            Returns: { }
            The second trajectory is a single point (0, 0, 0), which doesn't lie on the first trajectory.
            1)
                
            2
            4
            1
            -1
            -1
            0
            Returns: {0.0, 1.0, 0.5 }
            There is a single intersection point with coordinates (0, 1, 0.5).
            2)
                
            4
            4
            2
            5
            4
            0
            Returns: {0.0, 0.0, 0.0 }
            There are two intersection points.
            3)
                
            0
            0
            1
            1
            0
            0
            Returns: {0.0, 0.0, 0.0 }
            There are infinitely many intersection points.

            This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.


            要做這道題,要注意很多問題:
            1.看清題,題目中說了t是independent
            2.解一元二次方程要會吧!系數A,B,C的判定不要漏掉
            3.特殊情況下A=B=C什么時候有解考慮清楚

            這樣你就可以過題了!!!

            #pragma warning ( disable : 4786 )

            #include <vector>
            #include <list>
            #include <map>
            #include <set>
            #include <deque>
            #include <stack>
            #include <bitset>
            #include <queue>
            #include <algorithm>
            #include <functional>
            #include <numeric>
            #include <utility>
            #include <sstream>
            #include <iostream>
            #include <iomanip>
            #include <cstdio>
            #include <cmath>
            #include <cstdlib>
            #include <ctime>

            using namespace std;

            const double PI = acos(-1.0);

            #define sz(x) ((int)(x).size())
            #define Max(a,b) ((a)>(b)?(a):(b))
            #define Min(a,b) ((a)<(b)?(a):(b))
            #define MAXINT 1000000000
            #define EPS 1e-8
            #define FOR(a,b,c) for(a=(b);(a)<(c);++(a))
            #define REP(a,b) FOR(a,0,b)
            typedef vector<int> VI;

            inline int dblcmp(double a, double b) {
                if(fabs(a-b) < EPS) return 0;
                return a < b ? -1 : 1;
            }

            //typedef long long LL;

            /*
            cos(PI * t1)=vx * t2 + x0
            sin(PI * t1)=vy * t2 + y0
            t1=vz*t2+z0
            */


            class ParticleCollision
            {
            public:
                int vx, vy, vz, x0, y0, z0;

                bool check(double t2) {
                    double x2 = vx * t2 + x0;
                    double y2 = vy * t2 + y0;
                    double t1 = vz * t2 + z0;

                    if(dblcmp(cos(PI * t1), vx * t2 + x0)==0
                        && dblcmp(sin(PI * t1),vy * t2 + y0)==0
                        && dblcmp(t1,vz*t2+z0)==0)
                        return true;
                    return false;

                }
                vector <double> collision(int _vx, int _vy, int _vz, int _x0, int _y0, int _z0)
                {
                    vz=1;
                    vx = _vx;
                    vy = _vy;
                    vz = _vz;
                    x0 = _x0;
                    y0 = _y0;
                    z0 = _z0;
                    vector<double> mul(3, 0.0);
                    vector<double> empty;
                    int i, j;
                    double a = vx*vx + vy*vy;
                    double b = 2 * vx * x0 + 2 * vy * y0;
                    double c = x0 * x0 + y0 * y0 - 1;
                //    printf("a = %lf b = %lf c = %lf\n", a, b, c);
                    double det = b*b-4 * a * c;
                    if(dblcmp(a, 0.0) == 0) {
                        if(dblcmp(b, 0.0) == 0) {
                            if(dblcmp(c, 0.0) == 0) {
                                if(dblcmp(vz, 0.0) == 0) {
                                    if(dblcmp(x0, cos(PI * z0)) == 0
                                        && dblcmp(y0, sin(PI * z0)) == 0) {
                                        vector<double> ret;
                                        ret.push_back(x0);
                                        ret.push_back(y0);
                                        ret.push_back(z0);
                                        return ret;
                                    }
                                }
                                else return mul;
                            }
                            return empty;
                        }
                        double t = -c / b;
                        if(check(t)) {
                            vector<double> ret;
                            ret.push_back(vx * t + x0);
                            ret.push_back(vy * t + y0);
                            ret.push_back(vz * t + z0);
                            return ret;
                        }
                        return empty;
                    }
                //    printf("det = %lf\n", det);
                    int x = dblcmp(det, 0);
                    if(x == 1) {
                        int cnt = 0;
                        vector<double> ret;
                        for(i = 0; i < 2; ++i) {
                            double t;
                            if(i == 0) t = (-b - sqrt(det)) / 2 / a;
                            if(i == 1) t = (-b + sqrt(det)) / 2 / a;
                            
                            if(check(t)) {
                                ret.push_back(vx * t + x0);
                                ret.push_back(vy * t + y0);
                                ret.push_back(vz * t + z0);
                                cnt++;
                            }
                        }
                        if(cnt == 0) return empty;
                        else if(cnt == 1) return ret;
                        else return mul;
                    }
                    else if( x== -1) return empty;
                    else {
                        double t = (-b + sqrt(det)) / 2 / a;
                        if(check(t)) {
                            vector<double> ret;
                            ret.push_back(vx * t + x0);
                            ret.push_back(vy * t + y0);
                            ret.push_back(vz * t + z0);
                            return ret;
                        }
                        return empty;
                    }
                }
               
             
            };



            // Powered by FileEdit
            // Powered by TZTester 1.01 [25-Feb-2003]
            // Powered by CodeProcessor
             
            亚洲国产成人久久精品99| 久久综合视频网| 久久精品视频网| 久久免费美女视频| 久久99精品国产麻豆婷婷| 国产99久久久国产精品小说| 久久久久久国产a免费观看黄色大片 | 久久久无码一区二区三区| 久久精品国产亚洲AV无码偷窥| 亚洲狠狠婷婷综合久久蜜芽| 精品无码久久久久久午夜| 久久香综合精品久久伊人| 久久久久国产精品三级网| 7777久久亚洲中文字幕| 久久久这里有精品中文字幕| 综合网日日天干夜夜久久 | 狠狠精品久久久无码中文字幕 | 久久婷婷五月综合色奶水99啪| 久久久无码一区二区三区| 一本色道久久88综合日韩精品| 国产精品久久久久久福利69堂| 日韩乱码人妻无码中文字幕久久 | 日韩人妻无码一区二区三区久久 | 色天使久久综合网天天| 欧美一级久久久久久久大| 久久中文精品无码中文字幕| 久久毛片免费看一区二区三区| 久久国产免费直播| 久久人人爽人人爽人人片AV不| 2021国产精品午夜久久| 日产精品99久久久久久| 久久精品国内一区二区三区| 欧美伊人久久大香线蕉综合69| 久久亚洲AV无码西西人体| 精品国产乱码久久久久久呢| 久久精品国产第一区二区三区| 蜜桃麻豆www久久| 日韩精品久久久久久免费| 久久久久人妻一区精品| 一本色道久久综合亚洲精品| 人妻中文久久久久|