• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            SRM401 550 PTS ParticleCollision

            Posted on 2008-05-07 02:32 oyjpart 閱讀(2221) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽

            Problem Statement

                

            Particles (which can be considered points in 3D-space for the purposes of the problem) can move in an electro-magnetic field. If a particle is charged, its trajectory can be described as spiral, and if it is uncharged, it is just a straight line. Given two particles (one charged and one uncharged) it should be determined whether they can possibly collide or not. Two particles can possibly collide if and only if their trajectories intersect.

            Some steps have already been made by the physicist to simplify the problem, so the coordinates of the charged particle are represented as follows:

            x1 = cos(PI * t)

            y1 = sin(PI * t)

            z1 = t

            and for the uncharged particle:

            x2 = vx * t + x0

            y2 = vy * t + y0

            z2 = vz * t + z0

            Here t is a parameter which can be chosen arbitrarily and independently for both trajectories.

            Your method will be given 6 integers - vx, vy, vz, x0, y0 and z0, describing the trajectory of the uncharged particle. It should determine whether the two given trajectories intersect or not. If they do, it should return a vector <double> containing exactly 3 elements x, y and z - the coordinates of the point where a collision can happen. If there is more than one such point, it should return a vector <double> containing exactly three zeroes. If collision of the two particles is impossible it should return an empty vector <double>.

            Definition

                
            Class: ParticleCollision
            Method: collision
            Parameters: int, int, int, int, int, int
            Returns: vector <double>
            Method signature: vector <double> collision(int vx, int vy, int vz, int x0, int y0, int z0)
            (be sure your method is public)
                

            Notes

            - PI can be considered equal to 3.14159265358979323846.
            - All return values with either an absolute or relative error of less than 1.0E-9 are considered correct.

            Constraints

            - vx, vy and vz will each be between -10 and 10, inclusive.
            - x0, y0 and z0 will each be between -10 and 10, inclusive.

            Examples

            0)
                
            0
            0
            0
            0
            0
            0
            Returns: { }
            The second trajectory is a single point (0, 0, 0), which doesn't lie on the first trajectory.
            1)
                
            2
            4
            1
            -1
            -1
            0
            Returns: {0.0, 1.0, 0.5 }
            There is a single intersection point with coordinates (0, 1, 0.5).
            2)
                
            4
            4
            2
            5
            4
            0
            Returns: {0.0, 0.0, 0.0 }
            There are two intersection points.
            3)
                
            0
            0
            1
            1
            0
            0
            Returns: {0.0, 0.0, 0.0 }
            There are infinitely many intersection points.

            This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.


            要做這道題,要注意很多問題:
            1.看清題,題目中說了t是independent
            2.解一元二次方程要會吧!系數A,B,C的判定不要漏掉
            3.特殊情況下A=B=C什么時候有解考慮清楚

            這樣你就可以過題了!!!

            #pragma warning ( disable : 4786 )

            #include <vector>
            #include <list>
            #include <map>
            #include <set>
            #include <deque>
            #include <stack>
            #include <bitset>
            #include <queue>
            #include <algorithm>
            #include <functional>
            #include <numeric>
            #include <utility>
            #include <sstream>
            #include <iostream>
            #include <iomanip>
            #include <cstdio>
            #include <cmath>
            #include <cstdlib>
            #include <ctime>

            using namespace std;

            const double PI = acos(-1.0);

            #define sz(x) ((int)(x).size())
            #define Max(a,b) ((a)>(b)?(a):(b))
            #define Min(a,b) ((a)<(b)?(a):(b))
            #define MAXINT 1000000000
            #define EPS 1e-8
            #define FOR(a,b,c) for(a=(b);(a)<(c);++(a))
            #define REP(a,b) FOR(a,0,b)
            typedef vector<int> VI;

            inline int dblcmp(double a, double b) {
                if(fabs(a-b) < EPS) return 0;
                return a < b ? -1 : 1;
            }

            //typedef long long LL;

            /*
            cos(PI * t1)=vx * t2 + x0
            sin(PI * t1)=vy * t2 + y0
            t1=vz*t2+z0
            */


            class ParticleCollision
            {
            public:
                int vx, vy, vz, x0, y0, z0;

                bool check(double t2) {
                    double x2 = vx * t2 + x0;
                    double y2 = vy * t2 + y0;
                    double t1 = vz * t2 + z0;

                    if(dblcmp(cos(PI * t1), vx * t2 + x0)==0
                        && dblcmp(sin(PI * t1),vy * t2 + y0)==0
                        && dblcmp(t1,vz*t2+z0)==0)
                        return true;
                    return false;

                }
                vector <double> collision(int _vx, int _vy, int _vz, int _x0, int _y0, int _z0)
                {
                    vz=1;
                    vx = _vx;
                    vy = _vy;
                    vz = _vz;
                    x0 = _x0;
                    y0 = _y0;
                    z0 = _z0;
                    vector<double> mul(3, 0.0);
                    vector<double> empty;
                    int i, j;
                    double a = vx*vx + vy*vy;
                    double b = 2 * vx * x0 + 2 * vy * y0;
                    double c = x0 * x0 + y0 * y0 - 1;
                //    printf("a = %lf b = %lf c = %lf\n", a, b, c);
                    double det = b*b-4 * a * c;
                    if(dblcmp(a, 0.0) == 0) {
                        if(dblcmp(b, 0.0) == 0) {
                            if(dblcmp(c, 0.0) == 0) {
                                if(dblcmp(vz, 0.0) == 0) {
                                    if(dblcmp(x0, cos(PI * z0)) == 0
                                        && dblcmp(y0, sin(PI * z0)) == 0) {
                                        vector<double> ret;
                                        ret.push_back(x0);
                                        ret.push_back(y0);
                                        ret.push_back(z0);
                                        return ret;
                                    }
                                }
                                else return mul;
                            }
                            return empty;
                        }
                        double t = -c / b;
                        if(check(t)) {
                            vector<double> ret;
                            ret.push_back(vx * t + x0);
                            ret.push_back(vy * t + y0);
                            ret.push_back(vz * t + z0);
                            return ret;
                        }
                        return empty;
                    }
                //    printf("det = %lf\n", det);
                    int x = dblcmp(det, 0);
                    if(x == 1) {
                        int cnt = 0;
                        vector<double> ret;
                        for(i = 0; i < 2; ++i) {
                            double t;
                            if(i == 0) t = (-b - sqrt(det)) / 2 / a;
                            if(i == 1) t = (-b + sqrt(det)) / 2 / a;
                            
                            if(check(t)) {
                                ret.push_back(vx * t + x0);
                                ret.push_back(vy * t + y0);
                                ret.push_back(vz * t + z0);
                                cnt++;
                            }
                        }
                        if(cnt == 0) return empty;
                        else if(cnt == 1) return ret;
                        else return mul;
                    }
                    else if( x== -1) return empty;
                    else {
                        double t = (-b + sqrt(det)) / 2 / a;
                        if(check(t)) {
                            vector<double> ret;
                            ret.push_back(vx * t + x0);
                            ret.push_back(vy * t + y0);
                            ret.push_back(vz * t + z0);
                            return ret;
                        }
                        return empty;
                    }
                }
               
             
            };



            // Powered by FileEdit
            // Powered by TZTester 1.01 [25-Feb-2003]
            // Powered by CodeProcessor
             
            久久亚洲私人国产精品| 亚洲欧美久久久久9999| 国产精品久久久久无码av | 国内精品久久久久久久涩爱| 9191精品国产免费久久| 精品久久久一二三区| 国产情侣久久久久aⅴ免费| 久久综合九色欧美综合狠狠 | 日韩亚洲欧美久久久www综合网| 亚洲AⅤ优女AV综合久久久| 国产精品久久国产精品99盘| 一本色道久久综合狠狠躁篇 | 99久久国产综合精品成人影院 | 国产成人无码久久久精品一| 亚洲精品无码久久毛片| 伊人久久大香线焦综合四虎| 久久综合香蕉国产蜜臀AV| 欧美伊人久久大香线蕉综合69| 精品国产一区二区三区久久| 亚洲精品乱码久久久久久中文字幕| 欧洲性大片xxxxx久久久| 国产福利电影一区二区三区久久久久成人精品综合 | 亚洲国产另类久久久精品小说 | 久久www免费人成精品香蕉| 成人久久久观看免费毛片| 久久久久人妻一区二区三区vr| 久久久久99这里有精品10 | 久久久精品人妻一区二区三区四| 性做久久久久久久久老女人| 久久久久这里只有精品| 久久国产精品视频| 精品视频久久久久| 日批日出水久久亚洲精品tv| 亚洲精品久久久www| 亚洲欧美一区二区三区久久| 精品久久久久久无码不卡| 亚洲性久久久影院| 日产精品久久久久久久性色| 国产成人久久AV免费| 久久被窝电影亚洲爽爽爽| 久久e热在这里只有国产中文精品99|