• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            中南賽A題 Accumulation Degree

            Posted on 2008-05-05 20:59 oyjpart 閱讀(3060) 評論(9)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            Accumulation Degree
            Time Limit: 5000MS
            Memory Limit: 65536K
            Total Submissions: 248
            Accepted: 30

            Description

            Trees are an important component of the natural landscape because of their prevention of erosion and the provision of a specific ather-sheltered ecosystem in and under their foliage. Trees have also been found to play an important role in producing oxygen and reducing carbon dioxide in the atmosphere, as well as moderating ground temperatures. They are also significant elements in landscaping and agriculture, both for their aesthetic appeal and their orchard crops (such as apples). Wood from trees is a common building material.

            Trees also play an intimate role in many of the world's mythologies. Many scholars are interested in finding peculiar properties about trees, such as the center of a tree, tree counting, tree coloring. A(x) is one of such properties.

            A(x) (accumulation degree of node x) is defined as follows:

            1. Each edge of the tree has an positive capacity.
            2. The nodes with degree of one in the tree are named terminals.
            3. The flow of each edge can't exceed its capacity.
            4. A(x) is the maximal flow that node x can flow to other terminal nodes.

            Since it may be hard to understand the definition, an example is showed below:


            A(1)=11+5+8=24
            Details: 1->2 11
              1->4->3 5
              1->4->5 8(since 1->4 has capacity of 13)
            A(2)=5+6=11
            Details: 2->1->4->3 5
              2->1->4->5 6
            A(3)=5
            Details: 3->4->5 5
            A(4)=11+5+10=26
            Details: 4->1->2 11
              4->3 5
              4->5 10
            A(5)=10
            Details: 5->4->1->2 10

            The accumulation degree of a tree is the maximal accumulation degree among its nodes. Here your task is to find the accumulation degree of the given trees.

            Input

            The first line of the input is an integer T which indicates the number of test cases. The first line of each test case is a positive integer n. Each of the following n - 1 lines contains three integers x, y, z separated by spaces, representing there is an edge between node x and node y, and the capacity of the edge is z. Nodes are numbered from 1 to n.
            All the elements are nonnegative integers no more than 200000. You may assume that the test data are all tree metrics.

            Output

            For each test case, output the result on a single line.
             

            Sample Input

            1
            5
            1 2 11
            1 4 13
            3 4 5
            4 5 10

            Sample Output

            26

            Source


            這道題的基本思想是樹形DP,如果不能理解的話請試圖把雙向邊看成兩個單向邊,再比劃比劃就出來了。
            當然不一定非要以邊做為DP的單元,也可以歸到邊上(如果你有那份心的話)。
            比賽的時候因為數據量大而Stack Overflow,一直想寫人工模擬棧,但因為沒寫過,在比賽中寫不出來。

            五一節虛心的跟alpc62學習了怎么寫人工模擬棧,核心思想就是將同一個DFS內的不同DFS做個標記,這樣在出棧的時候就可以判斷自己所處的位置,也就知道自己該采取什么行動了。
            比如
            void DFS(int x) {
                for(int i = 0; i < head[x].size(); ++i) {
                   DFS(head[x][i]);
                }
            }
            如果把(x, i)這個2元組壓入棧也就知道自己現在所處的地方了。
            如果有更多的內部DFS,同樣是加對應的標記。

            當然,BFS也是一種很好的選擇(應該說大多數隊伍會選擇BFS而不是人工模擬棧)

            //Accumulation Degree in BFS

            #include <vector>
            #include <algorithm>
            #include <iostream>
            using namespace std;

            #define Min(a, b) (a<b?a:b)
            #define Max(a, b) (a>b?a:b)

            struct Node
            {
                int x, i, pre;
                Node() {}
                Node(int xx, int ii, int pp) {x=xx, i = ii, pre=pp;}
            };

            struct Edge
            {
                int x, w, dp;
                Edge() {}
                Edge(int xx, int ww, int dd=0) { x=xx,w=ww,dp=dd;}
            };

            const int N = 200010;
            vector<Edge> e[N];
            bool chk[N];
            int n, flow[N];

            void solve() {
                int i, j, k;
                vector<Node> Q;

                fill(chk, chk + n, 0);
                fill(flow, flow + n, 0);

                for(i = 0; i < n && e[i].size()!=1; ++i);
                int st = 0, end = 0;
                chk[i] = 1;
                for(j = 0; j < e[i].size(); ++j) {
                    Q.push_back(Node(i, j, -1));
                    end++;
                    chk[e[i][j].x] = 1;
                }
                while(st < end) {
                    int x = e[Q[st].x][Q[st].i].x, pre = Q[st].pre;
                    for(i = 0; i < e[x].size(); ++i) {
                        if(!chk[e[x][i].x]) {
                            Q.push_back(Node(x, i, st));
                            end++;
                            chk[e[x][i].x] = 1;
                        }
                    }
                    ++st;
                }
                for(i = end-1; i >= 0; --i) {
                    int x = Q[i].x, pre = Q[i].pre, idx = Q[i].i;
                    if(e[e[x][idx].x].size() == 1) e[x][idx].dp = e[x][idx].w;
                    else e[x][idx].dp = Min(e[x][idx].dp, e[x][idx].w);
                    if(pre == -1) continue;
                    int prex = Q[pre].x, preidx = Q[pre].i;
                    e[prex][preidx].dp += e[x][idx].dp;
                }


                for(i = 0; i < e[Q[0].x].size(); ++i) {
                    flow[Q[0].x] += e[Q[0].x][i].dp;
                }
                for(i = 0; i < end; ++i) {
                    int x = Q[i].x, pre = Q[i].pre, idx = Q[i].i;
                    int y = e[x][idx].x, xx;
                    for(xx = 0; xx < e[y].size() && e[y][xx].x != x; ++xx);
                    if(pre == -1) {
                        e[y][xx].dp = e[y][xx].w;
                    }
                    else {
                        e[y][xx].dp = Min(e[y][xx].dp, e[y][xx].w);
                    }
                    for(j = 0; j < e[y].size(); ++j) {
                        flow[y] += e[y][j].dp;
                    }
                    for(j = 0; j < e[y].size(); ++j) {
                        int yy = e[y][j].x;
                        if(yy == x) continue;
                        for(k = 0; k < e[yy].size() && e[yy][k].x != y; ++k);
                        e[yy][k].dp = flow[y] - e[y][j].dp;
                    }
                }

                int max = 0;
                for(i = 0; i < n; ++i)
                    max = Max(max, flow[i]);
                printf("%d\n", max);
            }

            int main() {
                int ntc;
                int i;
                int x, y, w;
                scanf("%d", &ntc);
                while(ntc--) {
                    scanf("%d", &n);
                    for(i = 0; i < n; ++i) e[i].clear();
                    for(i = 0; i < n-1; ++i) {
                        scanf("%d %d %d", &x, &y, &w);
                        --x; --y;
                        e[x].push_back(Edge(y, w));
                        e[y].push_back(Edge(x, w));
                    }
                    solve();
                }
                return 0;
            }


            Feedback

            # re: 中南賽A題 Accumulation Degree  回復  更多評論   

            2008-05-06 14:41 by wlzb
            不錯呀,上原創精華了

            # re: 中南賽A題 Accumulation Degree  回復  更多評論   

            2008-05-06 18:00 by oyjpart
            哦?

            # re: 中南賽A題 Accumulation Degree  回復  更多評論   

            2008-05-12 21:15 by alpc55
            太強了,你竟然模擬棧……

            # re: 中南賽A題 Accumulation Degree  回復  更多評論   

            2008-05-13 22:52 by ecnu_zp
            哦~~
            學習學習·~

            公網能進你們的oj系統嗎??

            # re: 中南賽A題 Accumulation Degree  回復  更多評論   

            2008-05-13 22:52 by ecnu_zp
            哦~~
            學習學習·~

            公網能進你們的oj系統嗎??
            教育網

            # re: 中南賽A題 Accumulation Degree  回復  更多評論   

            2008-05-13 23:50 by oyjpart
            我們是軍網 外網應該不能訪問

            # re: 中南賽A題 Accumulation Degree  回復  更多評論   

            2008-05-14 17:15 by ecnu_zp
            我還是不太明白啊~
            我想的dp是N^2A的,因為要對所有點執行一次~~
            我弱,能不能教我一下啊。

            ecnu_zp@yahoo.cn
            QQ:345717212
            MSN: arena_zp@live.cn

            ^_^

            # re: 中南賽A題 Accumulation Degree  回復  更多評論   

            2008-05-14 20:08 by oyjpart
            每條邊拆成2條邊 。 然后對每條邊設一個DP值。
            比如邊A->B. B連接的其他點的集合叫做S(S中去掉A)
            dp[A->B] = Min(Capacity[A->B], 加合(dp[B->Ci]));
            可以通過2次DFS來求出這些DP值。第一次求出一個方向的邊的DP值,再一次求出反向。
            試著畫個圖來理解吧:)

            # re: 中南賽A題 Accumulation Degree  回復  更多評論   

            2008-07-26 06:06 by lengbufang
            看看!!
            亚洲七七久久精品中文国产| 国产精品久久久久久一区二区三区| 亚洲国产综合久久天堂| 精品国产乱码久久久久软件| 久久大香香蕉国产| 久久精品国产免费观看三人同眠| av无码久久久久久不卡网站 | 久久精品夜夜夜夜夜久久| 国产成人久久精品区一区二区| 亚洲国产小视频精品久久久三级| www性久久久com| 性色欲网站人妻丰满中文久久不卡| 国产午夜精品久久久久九九| 精品国产乱码久久久久久1区2区| 日本精品久久久久影院日本| 日本久久久精品中文字幕| 久久亚洲精品无码AV红樱桃| 精品国产日韩久久亚洲| 亚洲AV伊人久久青青草原| 国产精品一区二区久久精品无码| 久久精品国产亚洲AV麻豆网站 | 麻豆一区二区99久久久久| 亚洲国产成人精品久久久国产成人一区二区三区综 | 日韩亚洲欧美久久久www综合网 | 香蕉久久夜色精品国产尤物| 久久se精品一区二区影院| 99久久精品国产综合一区| 99久久综合国产精品二区| 国产激情久久久久影院| 狠狠色丁香婷婷久久综合不卡| 无码人妻久久久一区二区三区| 亚洲精品无码久久久久| 久久久精品人妻一区二区三区四 | 精品久久久久久无码专区不卡| 久久午夜福利无码1000合集| 久久亚洲精品国产精品婷婷 | 久久99精品久久久久久水蜜桃| 国产三级精品久久| 久久综合久久美利坚合众国| 99精品久久久久久久婷婷| 国内精品久久久人妻中文字幕|